ROZPRAWY NR 152

Przemysław Simiński

METODYKA OKREŚLANIA WPŁYWU WYBRANYCH ZMIAN KONSTRUKCYJNYCH NA BEZPIECZEŃSTWO RUCHU WOJSKOWYCH POJAZDÓW KOŁOWYCH

BYDGOSZCZ – 2011
© Copyright
Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego
Bydgoszcz 2011

Praca powstała przy wsparciu projektu „Realizacja II etapu Regionalnego Centrum Innowacyjności” współfinansowanego ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Regionalnego Programu Operacyjnego Województwa Kujawsko-Pomorskiego na lata 2007-2013

ISSN 0209-0597
Spis treści

1. Wstęp ... 5

2. Cel i zakres pracy ... 6

3. Bezpieczeństwo wojskowych pojazdów kołowych ... 8
 3.1. Wojskowe pojazdy mechaniczne ... 8
 3.2. Bezpieczeństwo pojazdów ... 11
 3.3. Kołowe pojazdy opancerzone ... 14
 3.4. Przyczyny zagrożeń bezpieczeństwa ruchu wojskowych pojazdów kołowych ... 17
 3.4.1. Specyfika konstrukcji wojskowych pojazdów kołowych 17
 3.4.2. Procedura pozyskiwania konstrukcji wojskowych pojazdów kołowych ... 17
 3.4.3. Rodzaje i przyczyny wypadków z udziałem kołowych pojazdów opancerzonych ... 18
 3.4.4. Rodzaje i przyczyny wypadków z udziałem kołowych pojazdów członowych ... 19
 3.5. Możliwości poprawy bezpieczeństwa .. 20
 3.5.1. Badania eksperymentalne pojazdów kołowych 20
 3.5.2. Badania symulacyjne pojazdów kołowych ... 20
 3.5.3. Badania stateczności pojazdów członowych ... 22
 3.5.4. Inne możliwości poprawy bezpieczeństwa .. 23
 3.6. Podsumowanie rozdziału ... 23

4. Propozycja organizacji postępowania badawczego pozwalającego określić wpływ wybranych zmian konstrukcyjnych na bezpieczeństwo ruchu wojskowych pojazdów kołowych ... 25
 4.1. Zebranie danych do modelu .. 25
 4.2. Wybór modelu symulacyjnego .. 25
 4.3. Badania eksperymentalne .. 25
 4.4. Program badań symulacyjnych .. 26
 4.5. Badania symulacyjne .. 26
 4.6. Porównanie wyników z kryteriami oceny .. 26
 4.7. Podsumowanie rozdziału ... 27

5. Badania dwuosiowych lekkich pojazdów opancerzonych ... 28
 5.1. Badania eksperymentalne ... 28
 5.2. Badania symulacyjne .. 30
 5.2.1. Model fizyczny ... 30
 5.2.2. Model matematyczny .. 30
 5.2.3. Weryfikacja eksperymentalna modelu symulacyjnego dwuosiowego lekkiego pojazdu opancerzonego ... 35
 5.2.4. Parametry modelu symulacyjnego ... 42
 5.2.5. Badania wpływu położenia wybranych zmian konstrukcyjnych na zachowanie pojazdu w ruchu krzywoliniowym .. 49
 5.3. Podsumowanie rozdziału ... 77
6. Badania czteroosiowych średnich pojazdów opancerzonych 78
 6.1. Badania eksperymentalne .. 78
 6.2. Badania symulacyjne ... 79
 6.2.1. Model fizyczny .. 79
 6.2.2. Model matematyczny .. 83
 6.2.3. Weryfikacja eksperymentalna modelu symulacyjnego 84
 6.2.4. Badania ogumienia .. 87
 6.2.5. Przebieg badań symulacyjnych ... 93
 6.2.6. Badania wpływu wybranych parametrów konstrukcyjnych
 na zachowanie pojazdu w ruchu krzywoliniowym 94
 6.3. Podsumowanie rozdziału .. 105

7. Model zawieszenia hydropneumatycznego ... 106
 7.1. Właściwości zawieszenia hydropneumatycznego 106
 7.2. Model fizyczny .. 109
 7.3. Model matematyczny ... 113
 7.4. Badania czteroosiowych średnich pojazdów opancerzonych
 z wykorzystaniem modelu zawieszenia hydropneumatycznego 124
 7.4.1. Badania symulacyjne ... 124
 7.4.2. Ocena wpływu położenia środka masy oraz parametrów
 inercyjnych w ruchu krzywoliniowym .. 127
 7.4.3. Ocena wpływu położenia środka masy oraz parametrów
 inercyjnych w ruchu prostoliniowym .. 130
 7.5. Podsumowanie rozdziału ... 135

8. Podsumowanie i wnioski końcowe ... 136
 8.1. Rezultaty pracy ... 136
 8.2. Przesłanki do dalszych badań .. 137

9. Załącznik. Badania wojskowych pojazdów członowych 139
 Z1. Pojazdy członowe w wojsku .. 139
 Z2. Badania dynamiki w ruchu prostoliniowym .. 140
 Z3. Badania dynamiki w ruchu krzywoliniowym ... 146

Literatura... 151

Streszczenia... 161
1. WSTĘP

Obecnie rozwój sił zbrojnych w krajach członkowskich NATO oraz w Europie i związany z nim rodzaj używanego sprzętu i jego właściwości trakcyjne uzależnione są głównie od rodzaju konfliktu, w którym angażują się poszczególne armie. Aktualnie, większość działań o charakterze militarnym stanowią misje stabilizacyjne oraz przeciwdziałania różnorodnym formom terroryzmu. Formacje terrorystyczne nie zważają na prawo wojenne i stosują wszystkie dostępne środki i metody.

Obecnie głównym źródłem konfliktów jest nierównomierne rozwój światowej gospodarki. Różnice rozojowe powodują nierówny rokład sił we współczesnych działaniach wojennych, stąd bierze się pojęcie konfliktu asymetrycznego.

Charakterystyczne ze strony konfliktów asymetrycznych jest pojawianie się nowych zagrożeń, wśród których najpoważniejszym są improwizowane ładunki wybuchowe (IED). Ładunki, których celem są głównie pojazdy, umieszczane przy drogach powodują wprawdzie niewielkie, jednak uciążliwe straty w szeregach oddziałów wojsk NATO. Wymusza to rozwój pojazdów ukierunkowany na poprawę bezpieczeństwa żołnierzy.

Układanie różnych wersji specjalnych pojazdów, nie tylko wojskowych, na wieczności zbudowanym i wdrożonym podwoziem bazowym jest powszechnie stosowana praktyką. Opracowywanie przez producentów nowych konstrukcji pojazdów kołowych wiąże się także z koniecznością badań nad bezpieczeństwem ruchu. Zazwyczaj wykonuje się zarówno bardzo kosztowne, jak i niebezpieczne dla ludzi badania eksperymentalne na pojazdach prototypowych oraz niekiedy symulacyjne. Prowadzenie badań symulacyjnych pozwala zazwyczaj na większą efektywność dzięki możliwości uzyskania informacji o wpływie zmian konstrukcyjnych i eksploatacyjnych wraz ze skutkami ich przeprowadzenia, w szczególności na kierowność i stateczność, jeszcze na etapie projektowania. Zazwyczaj, że szczególne bezpieczeństwo dla żołnierzy pojazd w ruchu wiąże się z przewrotem samochodu na bok. Pojazdy o nietypowej konstrukcji, o wysoko położonym środkiem masy (np. pojazdy wojskowe zapewniające ochranę przed ładunkami improwizowanymi tzw. IED), są szczególnie podatne na takie wypadki.

Tworzenie nowych konstrukcji pojazdów, w tym na bazie wdrożonych już podwozi, nie powinno wiązać się z pogorszeniem ich bezpieczeństwa. Tymczasem podczas budowania wersji odmiennych od bazowych lub modernizacji pojazdów, wprowadzane są zmiany konstrukcyjne i eksploatacyjne wpływające na bezpieczeństwo, a zwłaszcza kierowność i stateczność. Należy także wzmienić, że potrzeby wojskowych działań operacyjnych wymuszają niekiedy budowę nowych pojazdów pod presją czasu. Duże pośpiechy ogranicza możliwości dopracowania elementów konstrukcji wpływających na bezpieczeństwo ruchu. Z tego względu konieczne jest podjęcie działań w kierunku ograniczenia zagrożeń i podniesienia bezpieczeństwa załóg pojazdów wojskowych. Stąd sugestia, aby zastosowanie w procesie wdrażania pojazdów odpowiedniej metodyki ograniczyło zagrożenia i wpłynęło na podniesienie bezpieczeństwa załogi.
2. CEL I ZAKRES PRACY

Praca dotyczy zagadnień związanych z bezpieczeństwem wojskowych pojazdów kołowych. Głównym jej celem jest opracowanie metodyki określania wpływu wybranych zmian konstrukcyjnych na bezpieczeństwo ruchu wojskowych pojazdów kołowych. Inne cele naukowe to: opracowanie różnorodnych modeli symulacyjnych, ich weryfikacja eksperymentalna, a następnie wykonanie badań pozwalających ocenić przydatność metodyki oraz określenie możliwych i uzasadnionych problemów dalszych badań. Oprócz celu naukowego można wskazać cel utylitarny pracy. Jest nim budowa oprogramowania oraz przedstawienie wyników badań wpływu wybranych zmian konstrukcyjnych na kierowalność i stateczność pojazdów wojskowych, co znacząco może wzbogacić narzędzia pracy konstruktorów kołowych pojazdów wojskowych.

Osiągnięcie celów pracy wymaga określenia specyfiki kołowych pojazdów wojskowych i zagadnień związanych z ich bezpieczeństwem. W szczególności niezbędna jest analiza ruchu kołowych pojazdów wojskowych i towarzyszących im zjawisk dynamicznych, w aspekcie przyczyn zagrożeń bezpieczeństwa ruchu wojskowych pojazdów kołowych oraz możliwości jego poprawy. Podstawą do prowadzonych analiz są wyniki badań eksperymentalnych i symulacyjnych. Istotne jest określenie procedury pozyskiwania nowych pojazdów wojskowych, która ma znaczący wpływ na ich bezpieczeństwo. Poruszane zagadnienia mają ścisłe związek z bezpieczeństwem pojazdu. Rezultaty pracy mogą być przydatne w siłach zbrojnych i przemysle zbrojeniowym. Efekty wymierne obejmują zwiększenie bezpieczeństwa pojazdu i związane z tym obniżenie ryzyka wypadków drogowych, kosztów budowy aplikacji wojskowych pojazdów kołowych, obniżenie kosztów wykonywania ewentualnych zmian w pojazdach seryjnych oraz pozyskanie dla potrzeb Wojska Polskiego konstrukcji zapewniających optymalne bezpieczeństwo ruchu.

Dążąc do osiągnięcia założonego celu pracy, w rozdziale 3 przedstawiono problematykę aktualnego procesu pozyskiwania pojazdów kołowych do sił zbrojnych i możliwych do pojawiania się z tego tytułu zagrożeń dla konstrukcji. W tym samym rozdziale, w oparciu o znane autorowi prace publikacje, przedstawiono przyczyny zagrożeń w ruchu kołowych pojazdów wojskowych. Wskazano główne przyczyny oraz skutki zdarzeń drogowych w aspekcie łożyskowym. Ponadto skupiono się na wskazaniu, na podstawie dostępnych publikacji, sposobów poprawy bezpieczeństwa ruchu kołowych pojazdów wojskowych. Większość z nich opiera się na analizie dostępnych wyników badań, które uzyskuje się analitycznie, symulacyjnie oraz eksperymentalnie. Określono zasób informacji o metodach badawczych, pozwalających na opracowanie metodyki określania wpływu wybranych zmian konstrukcyjnych na bezpieczeństwo ruchu wybranych z badań konstrukcyjnych.

W dalszej części pracy weryfikowano postępowanie badawcze złożone z badań eksperymentalnych oraz symulacyjnych, za pomocą opracowanych, zweryfikowanych eksperymentalnie modeli symulacyjnych. Określone postępowanie przeprowadzono dla różnych obiektów: dwuosobowych lekkich pojazdów opancerzonych (rozdz. 5), czterosilowych średnich pojazdów opancerzonych (rozdz. 6). Ze względu na obserwowane tendencje rozwijające w konstrukcji zawieszeń wojskowych pojazdów kołowych, zwłaszcza opancerzonych, określone postępowanie badawcze przeprowadzono dla opracowanego modelu pojazdu z zawieszeniem hydropneumatycznym (rozdz. 7).
3. BEZPIECZEŃSTWO WOJSKOWYCH POJAZDÓW KOŁOWYCH

3.1. Wojskowe pojazdy mechaniczne

Rys. 3.1. Klasyfikacja pojazdów łączowych [88]
Poszczególne grupy wymienione jako pojazdy lądowe wojskowe można również podzielić. Przykładowo klasyfikacja wozów bojowych według traktatu o Ograniczeniu Konwencjonalnych Zbrojeń w Europie (CFE), którą przedstawiono na rysunku 3.2 [91], uwzględnia przeznaczenie pojazdów. W zależności od wykonywanych zadań pojazdy narażone są na różnorodne zagrożenia. Dlatego też wymagane jest zachowanie określonego poziomu bezpieczeństwa.

Rys. 3.2. Klasyfikacja wozów bojowych wg CFE [91]

Zagrożenia dla wozów bojowych przyjęto klasyfikować w następujący sposób:
- ochrona przed wykryciem i identyfikacją,
- ochrona przeciwminowa,
- ochrona balistyczna,
- ochrona przed bronią masowego rażenia.
Rys. 3.3. Struktura parku samochodowego WP [11]
Szczegółowy podział pojazdów wojskowych został zawarty w strukturze parku samochodowego. Według [11, 50] struktura parku samochodowego sił zbrojnych WP (rys. 3.3) powinna być związana z:
- zadaniami transportowymi,
- potrzebną mobilnością,
- potrzebną ładownością,
- odrębnością konstrukcyjną podwozia każdej grupy.
Szczególnie istotna dla pojazdów wojskowych jest mobilność. W państwach NATO pojęcie to definiuje się jako:
- własność samochodu wynikającą z przystosowania do wykonywania zadania transportowego w różnych warunkach terenowych,
- zdolność do pracy w różnych warunkach klimatycznych i zapylenia,
- odporność na ostrzał oraz działanie min i ołdłamków,
- przystosowanie do transportu lotniczego i morskiego,
- przystosowanie do samodzielnego działania w nieznanym terenie,
- zdolność samozaładowczą.

3.2. Bezpieczeństwo pojazdów

Kwestie bezpieczeństwa pojazdów wojskowych są niezwykle istotne. Parafrazu-
jąc, bezpieczni żołnierze to bezpieczne społeczeństwo. Rozpatrując kwestie bezpieczeństwa pojazdów wojskowych nie można pominąć charakterystyki obiektów, jakimi są wojskowe pojazdy kołowe. Wprawdzie większość z nich można uznać za pojazdy specjalne, jednak część z nich jest specyficzna i charakteryzuje się rozwiązaniami technicznymi niespotykanymi na rynku pojazdów komercyjnych. W grupach pojazdów kołowych wystarczy wymienić: lekkie pojazdy opancerzone, pojazdy minoodporne (rys. 3.4), wozy bojowe i transportery piechoty oraz wozy specjalne (rys. 3.5), zestawy drogowe do transportu ciężkiej techniki bojowej (rys. 3.6) czy też wozy ewakuacji technicznej (rys. 3.7). Niepowtarzalność tych obiektów można zauważyć analizując ich parametry techniczne. Nawet z pobieżnego przeglądu można dostrzec, w zależności od typu pojazdu: ponadprzeciętne wymiary gabarytowe, dużą masę całkowitą, duże mo-
menty bezwładności. Szczególnie też pozostają warunki pracy kierowców, często z silnie ograniczoną widocznością oraz systemami zabezpieczeń antyminowych, jak specyficzne siedziska czy też systemy pasów bezpieczeństwa.

Rys. 3.4. Pojazd minoodporny
Na ogół rozpatrując pojazdy kołowe, w zakresie bezpieczeństwa, mówi się o dwóch jego obszarach: czynnym oraz biernym [193]. W aspekcie pojazdów samocho-
dowych wyróżnia się dwa podstawowe rodzaje bezpieczeństwa: czynne i bierne. Jako bezpieczeństwo czynne rozumie się zespół takich cech pojazdu, które umożliwiają kierowcy zmniejszenie lub uniknięcie ryzyka, czyli zmniejszenie prawdopodobieństwa powstania kolizji drogowej. Istotą jest zapobieganie wypadkom drogowym. W przypadku bezpieczeństwa bierennego mówi się o przeciwdziałaniu obrażeniom w trakcie kolizji drogowej.

W przypadkach bezpieczeństwa pojazdów wojskowych należy wspomnieć o konieczności przeciwdziałania zagrożeniom bojowym i związaną z tym ochroną załóg. Zapewnienie optymalnej ochrony załodze umożliwia wysoki poziom zespołu pojazdu, do których należą: siła ognia (możliwość rażenia przeciwnika odpowiednio skutecznymi środkami ogniowymi), odporność balistyczna i antyminowa (wyraźna jakością opancerzenia), wysoka mobilność (dynamika jazdy, pokonywanie przeszkód terenowych, zwrotność). Dopiero kompleksowy rozwój wspomnianych cech pozwala na osiągnięcie zadowalającego poziomu bezpieczeństwa. Wszelkie dysproporcje, jak np. silne opancerzenie przy niskiej dynamice ruchu, są niepożądaną i nie gwarantują bezpieczeństwa pojazdów wojskowych, zwłaszcza opancerzonych. Bezpieczeństwo pojazdów wojskowych należy rozpatrywać w szerszym aspekcie, np.: odporności balistycznej, transportowalności, urządzeń specjalnych, możliwości pokonywania przeszkód.

W procesie konstruowania pojazdów wojskowych, często na bazie podwozia czy też platformy, dokonuje się modyfikacji i modernizacji. W efekcie budowane są praktycznie nowe pojazdy, spełniające aktualne wymagania taktyczno-techniczne, dopasowane do bieżących potrzeb. Potrzeba osiągania i spełniania przez pojazd nowych wymagań bardzo często wiąże się z wyczerpiwaniem technicznych możliwości podwozi bazowych. Wobec tego celem nadrzędnym staje się konstruowanie nowych typów pojazdów bez pogorszenia dotychczasowego poziomu bezpieczeństwa. Dotyczy to zwłaszcza ruchu pojazdu, w szczególności jego dynamiki, czyli zachowania się podczas zmiany prędkości i toru jazdy.

O jakości pojazdu wojskowego (zwłaszcza bojowego) decydują jego główne cechy, tzn.: siła ognia, ruchliwość i opancerzenie, które w myśl zasady łańcucha powinny być ogniwanymi o takiej samej wytrzymałości. Pod pojęciem ruchliwości rozumie się zespół cech charakteryzujących zdolność do dynamicznej jazdy i manewrowania wozu na polu walki. Należą do nich: parametry charakteryzujące ruch prostoliniowy, zwrotność, zdolność pokonywania terenu. Potwierdzają to informacje z obszaru analizy literaturowej, a także badania prowadzone m.in. przez autora pracy [109, 110, 137, 140, 163, 157].

Autor w dalszej części pracy skupił się na rozwiązaniach nad bezpieczeństwem pojazdów wojskowych rozumianych jako połączenie bezpieczeństwa czynnego oraz zapewnienia jak najwyższej dynamiki ruchu jako cechy pojazdu zapewniającej ochronę załodze przed zagrożeniem bojowym. Na tak zdefiniowane bezpieczeństwo w dużej mierze będzie rzutować stateczność pojazdu. Statecznością podczas ruchu pojazdu określa się zdolność do zachowania toru jazdy zadanej przez kierowcę [193]. W przypadku poślizgu w ruchu prostoliniowym mamy do czynienia z utratą stateczności podłużnej. Najbardziej powszechna i niosąca największe zagrożenia jest utrata stateczności w ruchu krzywoliniowym, czyli poprzeczna. W przypadku utraty przyczepności poprzecznej może nastąpić zarzucenie pojazdu bądź, jeśli nawierzchnia ma wysoki współczynnik przyczepności lub środek masy pojazdu jest położony wysoko, wywrócenie pojazdu, co jest najgroźniejszym wypadkiem [94].
3.3. Kołowe pojazdy opancerzone

W podrozdziale zostaną przedstawione rodzaje pojazdów opancerzonych aktualnie wykorzystywanych w siłach zbrojnych. Różnorodne zagrożenia oraz zmiana zasad prowadzenia konfliktów powodują, że wojskowym pojazdom kołowym stawiane są nowe, odmienne od dotychczasowych wymagania. Dotyczą one wysokiej mobilności, ale przede wszystkim, podwyższonej ochrony załogi. Przykładowo park pojazdów kołowych w polskiej armii jest aktualnie mocno zróżnicowany. Oprócz obecnych kołowych wozów bojowych Rosomak, uznawanych za nowoczesne w innych grupach sprzętu, opisywanych w systematyce parku pojazdów w WP [96], jest też sprzęt po wieololetniej eksploatacji.

Ze względu na działania polskich kontyngentów wojskowych, konieczność stano się wprowadzenie do sił zbrojnych nowych pojazdów opancerzonych. W tym celu wdrożono niewielkie ilości pojazdów określanych jako SPI (samochód patrolowo-interwencyjny), czyli wysoce mobilnych, lekko opancerzonych i uzbrojonych pojazdów, przeznaczonych do prowadzenia walki z grupami zbrojnymi o charakterze terrorystycznym.

Planowane jest wprowadzenie pojazdów typu OSP (Opancerzone Samochody Patrolowe). OSP to grupa pojazdów adekwatnych do potrzeb operacji poza granicami kraju (w Afganistanie, Iraku). Pojazdy te w odróżnieniu od grupy SPI ma charakteryzować wyższy poziom ochrony balistycznej i przeciwwminowej. Obok pojazdów opancerzonych, niezbędne jest wprowadzenie nowych jednostek sprzętu w grupach samochołów ciężarowo-terenowych oraz zestawów transportowych ciągnik-naczepa. Na tle tych potrzeb uzasadniona jest dbałość o utrzymanie wysokiego poziomu bezpieczeństwa ruchu.

Rozwój pojazdów SPI, OSP, MRAP czy też zestawów transportowych oraz wersji specjalnych Rosomaka przebiega niezwykle dynamicznie, gdyż powstaje szereg nowych wersji. Uwarunkowaniem do szybkiego rozwoju stały się misje wojskowe poza granicami kraju i udział w nich wojsk polskich. Poniżej scharakteryzowano typy kołowych pojazdów opancerzonych.

Samochody przeznaczone do realizacji zadań patrolowych oraz interwencyjnych stanowią wyodrębnioną, nową kategorię pojazdów wojskowych i policyjnych, określoną jako samochody patrolowo-interwencyjne (SPI). Charakterystyczne cechy pojazdów SPI wynikają z ich przeznaczenia, a mianowicie:

a) zazwyczaj mieszczą 6-10 żołnierzy lub funkcjonariuszy z indywidualnym uzbrojeniem i wyposażeniem, co uznano za optymalne dla sprawnego wykonania zadań patrolowania i ewentualnej interwencji,
b) uzbrojeniem pokładowym jest karabin maszynowy (kalibru 7,62 mm, rzadziej 12,7 mm), ewentualnie lekki moździerz, a ostatnio automatyczny granatnik 40 mm; w niektórych pojazdach żołnierze mogą prowadzić przez otwory strzelnicze ogień z wnętrza wozu, na boki i do tyłu,
c) ochrona przed pociskami zazwyczaj odpowiada 1, a ostatnio 2 poziomowi wg Stanag 4569,
d) ochrona przed minami jest zróżnicowana, najczęściej spełnia wymagania poziomu 1 wg Stanag 4569 (granaty ręczne, odłamki pocisków haubicy oraz małe ładunki wybuchowe eksplodujące pod pojazdem),
e) powszechnie są stosowane szyby kuloodporne,
f) bardzo często stosowane są koła wyposażone w specjalne wkładki umożliwiające dalszą jazdę w przypadku uszkodzenia ogumienia przez pociski lub minę.
g) wszystkie samochody są zbudowane na podwoziach terenowych 4x4 lub 6x6.

Główną wadą samochodów z tej kategorii jest stosunkowo słaba i często niewy-

starzająca ochrona załogi przed ostrzałem z broni kalibru 12,7 mm i wyższych, a także

przed minami i improwizowanymi ładunkami wybuchowymi, które stają się największym

zagrożeniem żołnierzy biorących udział w bojowych patrolach.

Wspomnianych wad, typowych dla SPI, mają być pozbawione OSP-y (opancerzo-

ne samochody patrolowe). Takie określenie przyjęto na potrzeby pozyskania pojazdów

do operacji poza granicami kraju (w Afganistanie, Iraku) przez Dowództwo Wojsk

Lądowych. Pojazdy te w odróżnieniu od poprzedniej grupy SPI mają diametralnie wyższy

poziom ochrony balistycznej – poziom 3 wg STANAG 4569. Powoduje to wyższą

masę całkowitą dochodzącą do 16 t. Na wysokim poziomie (2a wg wspomnianego do-

dukumentu standardycznego, czyli 6 kg ekwiwalentu TNT wybuchającego pod kołem)

kształtuje się odporność przeciwminową pojazdów należących do kategorii OSP, rza-
dziej jest to 2b (6 kg TNT, ale pod kadłubem). Odporność na ładunki improwizowane

IED jest wystarczająca dla spełnienia poziomu IV. W stosunku do SPI w OSP ograni-
czono liczbę członków załogi do 5, wzmocniono także uzbrojenie – wykorzystywane są

obrotnice km kalibru 7,62 lub 12,7 mm oraz granatnik 40 mm. Pojazdy te wyposażane

są w środki łączności wewnętrznej oraz zewnętrznej z bardziej rozbudowanym i zinte-

growanym systemem informacyjnym.

Przykładem zapewnienia ochrony załodze jest amerykański program MRAP (Mine

Resistant Ambush Protected). Dotychczasowe doświadczenia z udziału żołnierzy ame-

rykańskich w działaniach w Iraku oraz Afganistanie wykazują jako priorytet osiągnięcie

jak najwyższej ochrony przeciwminowej w celu ograniczenia strat ludzkich. Struktura

amerykańskiego programu rozwojowego pojazdów MRAP obejmuje budowę 3 katego-

ri tych samochodów. Kategorię 1 stanowią samochody MRUV (Mine Resistant Utility

Vehicles), które mają być wykorzystywane do wykonywania zadań w terenie zurbi-

zowanym. Uzbrojone w system obrotnicy z karabinem maszynowym mają zabierać

6 osób załogi. Pierwotnie planowano zakup 1416 pojazdów. Do kategorii 2 należą po-

jazdy JERRV (Joint Explosive Ordnance Disposal Rapid Response Vehicle). Są one

przeznaczone do konwojowania, transportowania żołnierzy oraz zadań inżynieryjnych.

Do tych zadań przeznaczono pojazdy Cougar w wariantach 4x4 oraz 6x6. Kategorię 3

stanowią samochody do transportowania do 12 żołnierzy, o wysokiej odporności prze-

ciwminowej, wykorzystywane do zadań EOD (Explosive Ordnance Disposal). Do tych

zadań planowano wykorzystywać 64 pojazdy BUFFALO. Liczba przewożonych żoł-

nierzy jest mniejsza niż 10 (najczęściej 6). Inaczej jednak niż w przypadku HMMWV

czy przypominających go podstawowymi założeniami konstrukcyjnymi pojazdów ta-

kich jak: LMV, Eagle IV, RG-32 czy AMZ Tur, MRAP to pojazdy cięższe i większe.

Zabierają więcej pasażerów, często mają tylne drzwi przedziału pasażerskiego. Są też

znacznie bezpieczniejsze dla podróżnych. Nie można ich zatem bezpośrednio porównać

ze wspomnianymi konstrukcjami.

MRAP-y nie są jednak pozbawione wad. Ważną od 15 do 28 ton pojazdy opancerzo-

ne mają niewielki zasięg, a ich masa często przekracza nośność większości mostów na da-

nym terenie. Dzięki swojej masie są trudne w transportie powietrznym (MRAP nie mieści

się w ładowniach samolotów C-130 i wymaga kosztownego transportu na pokładzie C-17).

Kolejnym problemem, związанныm z obniżeniem bezpieczeństwa ruchu, są duże naciski

jednostkowe na podłoże, przez co pojazdy dosyć łatwo zakopują się poza szlakami drogo-
wymi. Zaletą wynikającą z dużych gabarytów jest bardzo dobra widoczność, przestrzenność wnętrza. Znaczną wadą, różnicą MRAP od OSP, jest niska mobilność w terenie oraz obniżona stateczność jazdy, przez co istnieje możliwość przewrócenia na bok. Ponadto utrudnia to ewakuację i poruszanie się w pobliżu linii wysokiego napięcia [20].

Kowłe transportery opancerzone to rodzaj bojowych wozów piechoty. W Wojsku Polskim przyj Blanc podział kowłowych transporterów opancerzonych (KTO) na trzy grupy pojazdów w zależności od przeznaczenia [42]: liniowe – do transportu pododdziałów piechoty, rozpoznawcze, transportery opancerzone – ze specjalnym wyposażeniem. W celu spełnienia wymagań przemieszczania operacyjnych niezbędne jest, aby transportery miały jak najwyższe wymienne parametry i właściwości [88]:
- zasięg autonomicznego marszu 1000 km,
- wyposażenie umożliwiające prowadzenie walki i wykonywanie marszu w składzie pododdziału przez co najmniej 3 døby,
- odpowiednią pojemność wnętrza np. dla 10-osobowej drużyny, wraz z uzbrojeniem i sprzętem,
- dostateczną ładowność,
- odpowiednie właściwości ergonomiczne, tzn. takie, które umożliwiają zachowanie właściwości psychofizycznych żołnierzy podczas realizacji różnych zadań, przez okres walki i marszu (w tym ochrona ABC, klimatyzacja, tłumienie drgań, widoczność),
- zapewnienie ochrony przed bronią maszynową i strzelecką,
- wyposażenie dowodowe i dowodzenia (środki obserwacji i rozpoznania, łączności, nawigacji),
- wysokie zdolności ruchowe: prędkość jazdy po drogach 100÷120 km/h, możliwości transportu przeprawmi terenowych, wykonywanie objazdów itd.

Analiza przytoczonych klasyfikacji pojazdów wojskowych, w zetknięciu z aktualnym trendami konstrukcji kowłowych pojazdów opancerzonych, wykazuje pewną ich dezaktualizację. Granica pomiędzy poszczególnymi grupami kowłowych pojazdów opancerzonych jest coraz mniej czytelną. Ponadto powstało szereg nowych grup pojazdów opancerzonych przedstawionych powyżej. Jeszcze na etapie wdrożenia dokonywanych jest szereg modyfikacji mających wpływać na lepsze dostosowanie konstrukcji do aktualnych potrzeb. Szczególnie traci na czytelności pojęcie lekki pojazd opancerzony, bowiem nie jest określone do jakiej masy należy uważać pojazd za lekki. Biorąc pod uwagę różnego rodzaju konstrukcje wydaje się to zdecydowanie niejednoznaczne. Klasyfikacja, jaką jest podział na pojazdy kowłe lekkie, średnie i ciężkie, może być pomocna przy prowadzeniu zakupów sprzętu czy kwalifikowaniu go do odpowiedniego rodzaju pododdziałów (komponenty lekkie lub ciężkie) i zadań. Najcześniejsza i zarazem najprostsza, zdaniem autora tej pracy, będzie klasyfikacja wynikająca z nacisków na poszczególne osie:
- pojazd dwuosiowy – do 12 t lekki; do 16 t średni, powyżej 16 t ciężki,
- pojazd trzyosiowy – do 15 t lekki; do 18 t średni, powyżej 18 t ciężki,
- pojazd czterosiowy – do 20 t lekki; do 28 t średni, powyżej 28 t ciężki.

Innym dylematem, trudnym do rozstrzygnięcia, jest granica, do której, w celu zapewniania ochrony żołnierzom, należy stosować opancerzenie kadłuba pojazdu, a w konsekwencji zwiększać jego masę, pogarszając przy tym własności trakcyjne, oraz kiedy opłaca się zastosować kołowe transportery opancerzone zamiast innych pojazdów. Po to aby rozwiązać ten problem, należy zwrócić uwagę na takie parametry taktyczno-techniczne, jak: objętość użytkowa wnętrza, możliwość montowania określonego wyposażenia i uzbrojenia, ładowność. Ponieważ pojazdy są bardziej „wrażliwe” na masę stosowanych pancery, wymienione powyżej parametry mają niższe wartości w porównaniu z kołowymi transporterami opancerzonymi. Mając na uwadze powyższe właściwości najbardziej zasadne wydają się wdrażanie pojazdów dwuosiowych i trzyosiowych lekkich oraz średnich, a w przypadku pojazdów czterosuwnych oraz ciężkich dwu- i trzyosiowych zastępowanie ich transporterami opancerzonymi.

3.4. Przyczyny zagrożeń bezpieczeństwa ruchu wojskowych pojazdów kołowych

3.4.1. Specyfika konstrukcji wojskowych pojazdów kołowych

W porównaniu z pojazdami komercyjnymi w konstrukcji kołowych pojazdów wojskowych można wskazać kilka zasadniczych różnic, które mają wpływ na bezpieczeństwo ruchu. Są to przede wszystkim: wysoko położony środek masy, duża masa własna bliska dopuszczalnej masy całkowitej, większe momenty bezwładności bryły nadwozia, ogumienie zazwyczaj o terenowym bieżniku, często brak systemów wspomagania bezpieczeństwa biernego i aktywnego, dodatkowy opóźniczki montowany na zewnątrz bryły nadwozia, mniejsza powierzchnia okien. Należy przy tym wspomnieć, że często w pewne różnice pojawiają się ze względu na konieczność zapewniania możliwości wysokiej ochrony załogi (balistycznej, przeciwpociągowej) lub/że wysokich parametrów technicznych związanych z pokonywaniem terenu. Dokonując porównania podwozi bazowych wojskowych pojazdów kołowych i wykonanych z ich wykorzystaniem wersji specjalnych można dostrzec kierunki zmian w postaci: dodatkowego opancerzenia, dodatkowego urządzenia pozwalającego na wykonanie zadań funkcjonalnych, czy liczniejszego osprzętu, w tym mocowanego na zewnątrz [6, 109, 114, 116, 143]. Budowa wersji specjalnych powoduje więc przesunięcie położenia środka masy oraz masowych momentów bezwładności, wpływając na ogół, negatywnie na bezpieczeństwo ruchu.

3.4.2. Procedura pozyskiwania konstrukcji wojskowych pojazdów kołowych

(Inspektorat Uzbrojenia). W instytucji realizującej, w razie potrzeb, opracowywane są wymagania taktyczno-techniczne oraz program badań (testów). Należy stwierdzić, że przy dużej indywidualności i specyfice obiektów mogą pojawić się trudności w wyczerpującym potraktowaniu w ramach testów problematyki bezpieczeństwa ruchu. Dodatkowo w procesie pozyskiwania sprzętu pojawiają się determinanty: czas oraz koszty. W procesie tym nie ma miejsca na poprawę i doskonalenie konstrukcji, a badania w zakresie bezpieczeństwa ruchu pojazdów kołowych mogą być ograniczone. Procedura wdrażania i weryfikacji sprzętu kładzie nacisk na optymalizację konstrukcji już na etapie projektowania oraz budowy prototypu. Procedura to jedna z głównych przesłanek przemawiających za opracowaniem metodyki z wykorzystaniem badań symulacyjnych.

3.4.3. Rodzaje i przyczyny wypadków z udziałem kołowych pojazdów opancerzonych

Do czynników, które mogą wpływać negatywnie na bezpieczeństwo ruchu można zaliczyć czas realizacji projektów od koncepcji pojazdu do jego wdrożenia, który ulega w przypadku wojskowych pojazdów kołowych znacznemu skróceniu ze względu na pełne potrzeby operacyjne [19]. W ostatnich latach znaczącemu skróceniu uległ proces badawczo-rozwojowy [6]. Przykładem może być program rozwojowy pojazdów MRAP [6], który został podzielony na trzy fazy obejmujące okres 9 miesięcy. W trakcie prac badawczych kwestie bezpieczeństwa ruchu zostały ograniczone do niezbędnych badań eksperymentalnych. Faza pierwsza obejmowała testy okresowe jako rozwojowe, zoriento wane w 90% na odporność pojazdu, a w 10% na weryfikację parametrów trakcyjnych. Rezultaty stały się podstawą do wprowadzenia pierwszych poprawek do konstrukcji pojazdów. Na tym etapie rozwoju, z uwagi na efekty badań trakcyjnych zorientowanych na bezpieczeństwo ruchu, wykonywano manewr ominięcia przeszkody (zmiana pasa ruchu) oraz sprawdzano skuteczność hamowania. Podczas drugiego etapu badań testowych kluczowe znaczenie nacisk na testy drogowe związane z funkcjonalnością poszczególnych systemów oraz na pojazd jako całość. Nie prowadzono prób ściśle związanych z bezpieczeństwem ruchu. W etapie trzecim z tego rodzaju testów wykonano próbę wywracania na bok (roll over), której celem była ocena wytrzymałości kaduba i wyposażenia wewnętrznego, a nie sama podatność na utratę stateczności. Wskazywano ponadto, że takie etapowe podejście do badań i weryfikacji spełnienia wymagań na pojazdy MRAP stanowi unikalne i kompletnie podejście do zagadnienia.

3.4.4. Rodzaje i przyczyny wypadków z udziałem kołowych pojazdów członowych

Dokonując przeglądu metod poprawy stabilności zestawów drogowych ciągnik siodłowy – naczepa, warto wskazać na główne zagrożenia dla utraty stabilności zestawu drogowego, czyli niewielki margines zachowywania stabilności, zwłaszcza przy wyższych prędkościach, w porównaniu z pojedynczym pojazdem. Na podkreślenie zasługuje fakt, że zachowanie się pojazdów członowych ciągników z naczeppami jest silnie uzależnione od konfiguracji układu jezdnego, ładunku oraz stanu nawierzchni [45]. Kolejną przyczyną wypadków jest składowanie się naczepy (ang. jackknifing) na skutek nierównomierności sił poprzecznych bądź ich zaniku w obszarze styku kół ogumionych tylnych osi ciągnika oraz/lub kół naczepy, podczas intensywnego hamowania. Innym powodem utraty stabilności jest ruch wężykowaty naczepy na skutek poprzecznych oscylacji, spowodowanych oporem powietrza bądź ruchami kierownicy. Znaczenie dla bezpieczeństwa ma również czas odpowiedzi naczepy na sygnał wymuszający powstały w układzie kierowniczym ciągnika, co związane jest z odległością pomiędzy ciągnikiem a naczeppą. Istotna jest też interakcja w postaci sygnałów zwrotnych otrzymywanych przez kierowcę, których źródłem są układy naczepy (hamulcowy, sterowania, jezdny) [45].
Negatywnym czynnikiem wpływającym na liczbę wypadków pojazdów członkowych jest różnica maksymalnej wartości przyspieszenia poprzecznego występująca pomiędzy ciągnikiem a naczepą w trakcie wykonywania manewru zmiany pasa ruchu. Określana jest ona współczynikiem RWA (ang. reward amplification).

3.5. Możliwości poprawy bezpieczeństwa

3.5.1. Badania eksperymentalne pojazdów kołowych

3.5.2. Badania symulacyjne pojazdów kołowych

Ze względu na koszty oraz ryzyko przedsięwzięcia jakim jest wdrożenie nowego pojazdu, wskazuje się na potrzeby badania wpływu określonych zmian konstrukcyjnych i eksploatacyjnych na różnych etapach rozwojowych projektów [87]. W pracy [25] zwrócono uwagę na znaczenie ograniczania zagrożenia w ruchu już na etapie projektu konstrukcji, podkreślając przy tym znaczącą rolę badań symulacyjnych. Ich przeprowadzenie umożliwia uzyskanie zadowalających rezultatów pozwalających na rozwiązywanie problemów doskonalenia konstrukcji i związanej z tym poprawy bezpieczeństwa ruchu. Zadaniem istotnym jest poświęcono prace [66, 67, 68, 154, 175, 178]. Ocenić wpływu poszczególnych zmian konstrukcyjnych na poprawę bezpieczeństwa za pomocą badań symulacyjnych umożliwia budowanie odpowiednich modeli symulacyjnych z wykorzystaniem...
pakietów MBS bądź oprogramowania własnego [33, 58, 81, 146]. Istotne rezultaty osiąga się stosując połączenie badań eksperymentalnych z symulacyjnymi [33].

Wykorzystywanie badań symulacyjnych pozwala na ocenę wpływu parametrów, które w badaniach eksperymentalnych byłyby trudne lub niemożliwe do oceny. Są to m.in. parametry zawieszenia czy też podatność podwozia [190, 194]. W zapobieganiu głównemu zagrożeniu bezpieczeństwa wojskowych pojazdów kołowych, jakim jest wywrócenie pojazdu na bok, dostrzeżono wpływ parametrów ogumienia [38]. Współpraća kola ogumionego z podłożem sztywnym ma istotny wpływ na zachowanie pojazdu oraz komfort jazdy, szczególnie podczas ruchu pojazdu w kierunku poprzecznym. Określenie sił poprzecznych pozwala oszacować ryzyko wystąpienia przewrócenia na bok.

Jednym z powszechnych kierunków prac nad poprawą bezpieczeństwa jest rozwój urządzeń stabilizacji toru jazdy [5, 7, 8, 32, 69, 90, 130]. W celu poprawy panowania nad pojazdem i zachowania stabilności proponowane są różnorodne strategie aktywnej kontroli jazdy. Podaje się konkretne algorytmy działania oraz metody obliczeniowe dla elektronicznych systemów kontroli stabilności pojazdu, rozbudowane o kontrolę położenia wysokości środka masy i wyznaczania środka obrotu bryły nadwozia w stosunku do dotychczasowych systemów stabilizacji toru jazdy [5, 36, 90]. Następuje rozwój metod kontrolowania zachowania stateczności pojazdu, bazujących na pomiarze kąta znoszenia pojazdu oraz uwzględnieniu warunków jazdy [130].

Systemy kontroli stabilności zazwyczaj badane są z szerokim wykorzystaniem symulacji [21, 43, 130, 132, 183], a ich rezultaty weryfikowane są eksperymentalnie [33].

Większość używanych metod opiera się na modyfikacji układu zawieszenia, polegającej na wprowadzaniu aktywnych zawieszeń [8, 15, 16, 29, 43, 97, 123], pozwalających kształtować charakterystykę sprężystości zawieszenia w kierunku pionowym oraz regulować przeswit, a co za tym idzie wysokość środka masy. Prace te prowadzi się zazwyczaj opierając się o modele matematyczne [10, 47, 76, 83, 192], co umożliwia m.in. prowadzenie badań porównawczych z wariantem zawieszenia pasywnego. Wskaże się jednocześnie na zasadność stosowania tego typu zawieszenia zwłaszcza w pojazdach wojskowych, gdzie stawiany jest wymóg wysokiej zdolności do pokonywania terenu oraz stabilizowania uzbrojenia. Problematykę zawieszeń w pojazdach szeroko opisano w pracy [44].

Jako istotną, wskazuje się metodę określania tendencji do utraty stateczności poprzecznej opierając się o Load Transfer Ratio (wskaźnik rozmieszczenia ładunku) pojmowany jako Roll Safety Factor, tj. współczynnik bezpieczeństwa na wywracanie [54]. W metodzie celem jest wyznaczenie parametrów krytycznych i sygnaлизacja tego stanu z odpowiednim (min. 0,5 s) uprzedzeniem kierowcy. Badania tego typu prowadzone są opierając się na oprogramowaniu symulacyjnym wykorzystującym sieci neuronowe oraz pakiet MBS. Określenie manewrów sprzyjających możliwości wywrócenia się pojazdu na bok można spradować bezpośrednio do dynamiki pojazdu do chwili, kiedy kierowca ma kontrolę nad pojazdem, a jego reakcje i percepcja mają jeszcze bezpośredni wpływ na bezpieczeństwo [35]. Idea ostrzegania o stanie zagrożenia zakłada powiadomienie o nim z takim wyprzedzeniem, aby możliwa była reakcja kierowcy. Pomiary dynamiki, za pomocą szeregu sensorów, zakładają eksperymentalne określenie współczynników służących do wyznaczenia stateczności poprzecznej związanej z pomiarami: przyspieszenia poprzecznego, kątów znoszenia kół jezdnych oraz rozmieszczenia ładunku w konsekwencji możliwa jest do określenia strategii ostrzegania kierowcy [37].
Badania symulacyjne wykraczania na bok na pojazdach użytkowanych w wojsku prowadzone są także wykorzystując programy do analizy rekonstrukcji wypadków [35]. Umożliwiają one porównanie uzyskanych rezultatów z dostępnymi danymi na temat prędkości kątowej obracania bryły nadwozia, energii, przyspieszeń prędkości i trajektorii środka masy pojazdu [35], przy czym większość modeli umożliwia wykonywanie typowych manewrów pojazdem [4, 188, 196]. Ponadto zwrócono uwagę [30], że modele opisujące ciężkie pojazdy są kompleksowe, czyli o dużym stopniu złożoności, co niekiedy powoduje spore trudności z określeniem właściwych parametrów i danych.

Część prac [4, 137, 191] ukierunkowana jest na znalezienie optymalnej strategii sterowania pojazdem wieloosiowym, co pozwala ograniczyć kąty znoszenia i obniżyć ryzyko zarzucenia błędnie w oparciu o nieliniowe modele pojazdów wojskowych.

Badania modelowe ukierunkowane na poprawę bezpieczeństwa mają doskonalić układy hamulcowe oraz ABS i EBD [165, 185, 189, 190]. Celem jest nie tylko poprawa skuteczności hamowania, ale także dobór momentów hamujących działających na koła i zapewniających stabilność.

Samochody o nietypowej konstrukcji, o wysoko położonym środkiem masy, są szczególnie podatne na zagrożenia utraty stateczności. Ocena skłonności do przewrócenia samochodu na bok może być prowadzona także metodami analitycznymi. Stany graniczne ruchu można oceniać na dwa sposoby [57, 84]. Należy wyznaczyć maksymalne możliwe do osiągnięcia przyspieszenie poprzeczne oraz określić warunki, w których nastąpi przewrót pojazdu na bok (uderwanie dwóch wewnętrznych koł od nawierzchni drogi). W przypadku metod analitycznych jest to równoznaczne z osiągnięciem ekstremalnej wartości przyspieszenia poprzecznego. Zastosowanie złożonych modeli samochodu wskazuje [55], że maksymalne przyspieszenie poprzeczne występuje po uderzeniu pierwszego, a przed uderzeniem drugiego koła, co wynika ze zmiany toru ruchu pojazdu. W tym przypadku miarę stanu granicznego jest nie tylko przyspieszenie poprzeczne, ale także kąt obrotu kierownicy i kąt przechyłu bocznej, dla których odrywane jest pierwsze, a potem drugie koło. W większości analizowano przypadki ruchu po nawierzchni poziomej, a więc dla zerowej przechyłki bocznej i zerowego pochylenia podłużnego drogi. Jest to bardzo istotna uwaga, gdyż dla rzeczywistych dróg wielkości te mogą przyjmować różne wartości, wpływające w istotny sposób na wartości analityzowanych parametrów ruchu.

3.5.3. Badania stateczności pojazdów członowych

Złożonym zagadnieniem jest poprawa bezpieczeństwa ruchu zestawów drogowych ciągnik-naczepa, które znajdują się na wyposażeniu polskiej armii. Dla tego typu pojazdów członowych prowadzi się również analizy [128, 129] przewracania się na bok naczepy oraz wyznacza graniczną bezpieczną wysokość położenia środka masy. Wyniki obliczeń są niekiedy podparte badaniami numerycznymi oraz eksperymentalnymi [128].

Badania dynamiki zestawów ciągnik-naczepa oraz ich stateczności skupiają się zarówno na analizie klasycznych modeli liniowych, najczęściej o trzech stopniach swobody, jak również na badaniach symulacyjnych wykonywanych opierając się na modelach nieliniowych uwzględniających dynamikę ogumienia oraz zawieszenia. Jako metodę kontroli stateczności zestawu ciągnik-naczepa proponuje się kontrolę kąta znoszenia przez ograniczanie momentu obracającego powstającego pomiędzy ciągnikiem a naczepą poprzez odpowiednią dystrybucję sił hamujących pomiędzy kołami na po-
szczególnych stron naczepy. Prowadzony jest rozwój systemów kontroli stabilności zestawu ciągnika z naczyępą [51, 123], bazujący m.in. na aktywnym zawieszeniu.

Szeroki przegląd metod poprawy stateczności zestawów ciągnik-naczyepa przedstawiono w pracy [45]. Należy do nich kontrola kąta odchylenia (Direct Yaw Control – DYC), która polega na monitorowaniu kąta odchylenia i w razie potrzeby generowaniu momentu stabilizującego poprzez przyhamowywanie odpowiednich kół zestawu z udziałem ABS. Część metod opiera się na sterowaniu kół tylnych (Rear Wheel Steering – RWS). Celem sterowania kół tylnych naczepy jest minimalizowanie różnicy przyspieszenia porozłącznego między ciągnikiem a naczyępą i w efekcie wywracania się naczepy. Realizacja algorytmu sterowania kół naczyepy może odbywać się na zasadzie otwartej pętli, kiedy to kąt skrętu zależy od skrętu kół ciągnika oraz prędkości jazdy. W celu optymalnej kontroli RWS uwzględnia się także pośługę kół oraz położenie sprzęgu względem osi wzdłużnej naczepy.

3.5.4. Inne możliwości poprawy bezpieczeństwa

Niezwykle ważne dla bezpieczeństwa kołowych pojazdów wojskowych jest wytłoczenie operatora [80], który oprócz prowadzenia pojazdu wykonuje czynności obserwacji przedpolu (w tym oceny sytuacji bojowej) oraz obsługuje dodatkowych urządzeń łączności, nawigacji, przeciwcchemicznych itp. Szkolenie kierowców należy prowadzić przez trening praktyczny [6] lub z wykorzystaniem symulatorów [60].

Analiza wypadków drogowych z udziałem pojazdów wojskowych pod kątem użycia przez załogę pasów bezpieczeństwa [182] w poszczególnych kategoriach pojazdów wykorzystywanych w armii amerykańskiej (w tym czołgów i ciężkich pojazdów kołowych) wskazuje na bezwzględną potrzebę ich stosowania. Powinno to być pasy z wieloma punktami mocowania (minimum 4). Takie spostrzeżenia zostały potwierdzone niedawnymi badaniami symulacyjnymi [127]. Może to w sposób bezpośredni przyczynić się do zredukowania skutków wypadków z udziałem kołowych pojazdów wojskowych.

3.6. Podsumowanie rozdziału

Z przedstawionych informacji na temat zagrożeń w ruchu kołowych pojazdów wojskowych oraz sposobów poprawy bezpieczeństwa wynika sposób postępowania badawczego. Rozwiązanie postawionego problemu poprawy bezpieczeństwa ruchu kołowych pojazdów wojskowych powinno polegać na ocenie wpływu zmian konstrukcyjnych wprowadzanych do tych pojazdów na ich bezpieczeństwo ruchu. Podstawą do określenia zmiany poziomu bezpieczeństwa ruchu powinna być przede wszystkim ocena rezultatów badań dla reprezentatywnych manewrów, a następnie wprowadzenie na tej podstawie modyfikacji do konstrukcji pojazdu. Potwierdza to słuszność przyjętego celu naukowego, którym jest opracowanie metodyki określania wpływu wybranych zmian konstrukcyjnych na bezpieczeństwo ruchu wojskowych pojazdów kołowych.

Podstawę do realizacji zakresu badań symulacyjnych może stanowić własne lub komercyjne oprogramowanie komputerowe zbudowane na bazie opracowanych i zeryfikowanych eksperymentalnie modeli matematycznych ruchu i dynamicznej pojazdów dwu- i wieloosiowych. Istotne jest odpowiednie zaplecze pomiarowe oraz wykwalifikowany personel do przeprowadzenia badań eksperymentalnych.

Dotychczas powstało niewiele opracowań traktujących o problematyce dynamiki ruchu wojskowych pojazdów kołowych w aspekcie ich bezpieczeństwa. W głównej
mierze dotyczyły one wpływu wybranej pojedynczej modyfikacji lub odnosiły się do pojazdów ogólnego przeznaczenia (bardzo niewiele opracowań dotyczy pojazdów opancerzonych). Szczególnie mało informacji dostępnych jest w literaturze krajowej. Dlatego celem rozprawy jest m.in. uzupełnienie tego obszaru w zakresie tematyki badań dynamiki ruchu wojskowych pojazdów kołowych w aspekcie ich bezpieczeństwa.

Przeglądając dostępne publikacje na temat badań, elementem utrudniającym ocenę wyników w kwestii jakościowej jest brak jednolitej nomenklatury w zakresie podziału opancerzonych pojazdów kołowych. Zasadne wydaje się wprowadzenie takiej klasyfikacji jak w podrozdziale 3.3.
4. PROPOZYCJA ORGANIZACJI POSTĘPOWANIA BADAWCZEGO POZWALAĆCEGO OKREŚLAĆ Wpływ Wybranych Zmian Konstrukcyjnych na Bezpieczeństwo Ruchu Wojskowych Pojazdów Kołowych

4.1. Zebranie danych do modelu

4.2. Wybór modelu symulacyjnego

Na tym etapie należy dobrać model symulacyjny, ewentualnie zmodyfikować, stosownie do charakterystyki obiektu badań, posiadany model uniwersalny. Dobór modelu adekwatnego do obiektu badań powinien zostać przeprowadzony opierając się na jego strukturze: bryle nadwozia, układzie jezdny, układzie zawieszenia oraz liczbie kół ogumionych. Dla różnych pojazdów opancerzonych zakłada się wykorzystanie modeli symulacyjnych o zbliżonym stopniu złożoności. Co istotne, bazuje się na rodzinie wcześniejsznie zbudowanych i zweryfikowanych modeli symulacyjnych.

4.3. Badania eksperymentalne

Badania eksperymentalne mogą być prowadzone niezależnie (równolegle) od realizacji programu badań symulacyjnych. Ponadto mogą być prowadzone na etapie badań testowych, od których uzależnione jest wprowadzenie pojazdu do sił zbrojnych. Biorąc pod uwagę wspomniane determinanty wprowadzania nowego uzbrojenia, czyli czas oraz koszty, a także umożliwienie weryfikacji rozważań teoretycznych, badań symulacyjnych oraz ocenę z uwzględnieniem stawianych kryteriów, program badań eksperymentalnych powinien zawierać następujące testy:
- hamowania prostoliniowego,
- intensywność rozprowadzenia,
- prędkości maksymalnej,
– podwójnej zmiany pasa ruchu,
– pokonywanie typowych przeszkód terenowych o określonych parametrach.

Proponowany zakres badań pozwala na ich realizację w ograniczonym zakresie czasu, czyli w tzw. trybie przyspieszonym. Tryb przyspieszony nie został dotychczas nigdzie zdefiniowany. Z doświadczeń autora definicja tego trybu postępowania w badaniach wynika bezpośrednio z obowiązujących procedur wdrażania sprzętu wojskowego, a zwłaszcza pilnej potrzeby operacyjnej [19]. Ze względu na potrzebę operacyjną istotny jest czas od zdefiniowania potrzeby do wdrożenia pojazdu i powinien on być jak najkrótszy. Zdaniem autora specyfika wdrażania sprzętu wojskowego w ramach pilnej potrzeby upoważnia do maksymalnego skrócenia czasu badań.

4.4. Program badań symulacyjnych

Zastosowanie zweryfikowanych modeli symulacyjnych umożliwia wydatne skrócenia czasu badań oraz wykonanie testów trudnych do realizacji eksperymentalnie ze względu na bezpieczeństwo żołnierzy oraz niezbędny stopień ingerencji w konstrukcję pojazdu w celu instalacji aparatury pomiarowej. Stosownie do zakresu wprowadzonych, w odniesieniu do podwozia bazowego, zmian konstrukcyjnych lub wymagań użytkownika należy określić program badań symulacyjnych. Powinny być one zasadniczo prowadzone opierając się na znormalizowanych testach otwartych lub zamkniętych, nie wykluczając doboru testów ścisłej do potrzeb specyficznych zmian konstrukcyjnych, np. najazdu na przeszkodę w celu określenia zmian jakościowych w układzie zawieszenia, przy czym zakres testów powinien być możliwie szeroki. W badaniach symulacyjnych, o ile to konieczne, należy uwzględnić specyfikę pór roku, w odniesieniu do nawierzchni oraz oporów ruchu (toczenia, powietrza). Zaleca się uwzględnienie zakresu zmian konstrukcyjnych wybranych parametrów, w celu szerszego określenia ich wpływu na bezpieczeństwo (nieliniowy wpływ), w stosunku do ich rzeczywistych wartości.

4.5. Badania symulacyjne

Etap ten polega na realizacji założonego programu badań oraz konfiguracji i gromadzeniu danych wyjściowych. Na tym etapie rezultaty badań mogą być przedstawiane w postaci zbiorów liczb, arkuszy, wykresów i animacji.

4.6. Porównanie wyników z kryteriami oceny

Wyniki badań symulacyjnych należy porównać z adekwatnymi rezultatami uzyskanymi dla pojazdu bez modyfikacji (bazowego). Należy je, w obu przypadkach, odnieść do istniejących unormowań międzynarodowych (ISO, AVTP itp.). Innymi kryteriami mogą być wymagania określone przez przyszłego użytkownika (gestora) – wymagania taktyczno-techniczne (wtt).

Poniżej na rysunku 4.1 przedstawiono schemat postępowania w trakcie realizacji metodyki.
4.7. Podsumowanie rozdziału

Opracowana metodyka jest postępowaniem realizowanym opierając się na niezbędnych, ze względów przyszłego bezpiecznego użytkowania pojazdów, badaniach eksperymentalnych oraz tych realizowanych na podstawie modeli symulacyjnych. Warunkiem koniecznym do postępowania zgodnie z przedmiotową metodyką jest dostęp do wcześniej zweryfikowanych eksperymentalnie modeli symulacyjnych.

W dalszej części pracy zostanie przeprowadzone postępowanie mające na celu sprawdzenie możliwości realizacji założonej metodyki. Dokonano je przy wykorzystaniu modeli o różnym stopniu złożoności, opracowanych przy wykorzystaniu różnych narzędzi, jak oprogramowanie własne, programy MBS. Ponieważ istotna ze względu na przyszłe postępowania wdrożeniowe kołowych pojazdów wojskowych do armii jest możliwość oceny różnych typów pojazdów, badania zostaną zrealizowane dla dwóch mocno zróżnicowanych obiektów. W opisie obiektów przyjęto opracowaną przez autora klasyfikację w podrozdziale 3.3.
5. BADANIA DWUOSIOWYCH LEKKICH POJAZDÓW OPAŃCZONYCH

5.1. Badania eksperymentalne

Jak wspomniano w rozdziale 3, wprowadzanie zmian konstrukcyjnych wymuszone jest różnorodnymi potrzebami sił zbrojnych. Zachodzi wówczas potrzeba prowadzenia badań, które w sposób przyspieszony, ale jednoznaczny określają zakres wprowadzonych zmian wpływających na bezpieczeństwo ruchu.

Badania wykonane przez autora, których wyniki zaprezentowano w pracach [149, 154], przeprowadzono wyłącznie na podstawie badań eksperymentalnych. Ich obiektem był dwuosowy lekki pojazd opancerzony (rys. 5.1). Pojazd ten został zmodernizowany dzięki dodatkowym osłonom balistycznym. Zmieniony kadłub wpływał bezpośrednio na: masę pojazdu i jej rozkład na koła, masowe momenty bezwładności oraz położenie środka masy, a w konsekwencji na dynamiczne oraz bezpieczeństwo ruchu.

Rys. 5.1. Lekki dwuosowy pojazd opancerzony HMMWV 1043A ze zmodernizowanym kadłubem

Dlatego też celem badań była ocena wpływu przeprowadzonej modernizacji na własności dynamiczne oraz bezpieczeństwo ruchu. Przeprowadzono je na podstawie prób porównawczych, przy czym rozpatrywano trzy warianty obciążenia pojazdu:
- pojazd bez ładunku, gotowy do drogi – masa bojowa,
- pojazd obciążony do dmč (dopuszczalna masa całkowita),
- pojazd po modernizacji – masa po modernizacji.

Skutkiem przeprowadzonej modernizacji mogła okazać się także zmiana parametrów trakcyjnych poniżej poziomu akceptowalnego ze względu na bezpieczeństwo, dlatego przeprowadzono badania eksperymentalne opisane w pracy [154].
W badaniach dynamiki porównywano intensywność rozpędzania i hamowania na nawierzchni sztywnej dla pojazdu w wariantach 2 i 3. Badania bezpieczeństwa ruchu polegały na porównaniu wpływu modernizacji nadwozia pojazdu na zachowanie się podczas jazdy po okręgu o stałym promieniu oraz manewru podwójnej zmiany pasa ruchu (wg unormowań ISO 4138 oraz ISO TR 3888). Na rysunkach 5.2 i 5.3 przedstawiono przykładowe przebiegi czasowe uzyskane w trakcie wspomnianych badań. Wskazują one na wpływ wprowadzonych modyfikacji na stateczność poprzeczną poprzez obniżenie wartości przyspieszenia poprzecznego oraz zwiększenie kąta przechyłu nadwozia.

Rys. 5.2. Manewr podwójnej zmiany pasa ruchu – porównanie dla prędkości 90 km/h. Czasowy przebieg przyspieszenia poprzecznego: linią czerwoną oznaczono wariant nr 2, linią niebieską wariant nr 3

Rys. 5.3. Manewr podwójnej zmiany pasa ruchu – porównanie dla prędkości 90 km/h. Czasowy przebieg kąta poprzecznego przechyłu nadwozia: linią czerwoną oznaczono wariant nr 2, linią niebieską wariant nr 3
Głównym celem modyfikacji pojazdu była poprawa ochrony balistycznej załogi, a celem badań określenie, czy modyfikacja wpłynęła negatywnie na bezpieczeństwo ruchu. Uzyskane wyniki w postaci charakterystyk pozwoliły na pozytywną ocenę bezpieczeństwa w ruchu krzywoliniowym. Wyniki mogły być również podstawą do oceny uzyskanych parametrów dynamiki jazdy przez użytkowników pojazdu, czyli żołnierzy.

Weryfikacja tego stanu rzeczy staje się sprawą niezwykle ważną ze względu na powszechny charakter tego typu zmian konstrukcyjnych i modyfikacji. Ustalony i następnie zrealizowany tok prowadzenia badań eksperymentalnych pozwolił na ocenę wpływu zmiany masy pojazdu, masowych momentów bezwładności, położenia środka masy pojazdu na jego dynamikę oraz zachowanie w ruchu krzywoliniowym.

Przedstawione postępowanie pozwala na stosunkowo szybką, mimo eksperymentalnej charakteru badań, ocenę wpływu niektórych zmian konstrukcyjnych na dynamikę oraz bezpieczeństwo pojazdów wojskowych, co należy traktować jako zaletę. Zaproponowane badania eksperymentalne wymagają przygotowania określonej aparatury badawczej oraz infrastruktury, ich realizacja bywa utrudniona. Osiągnięcie zysku czasowego nawet przy zawężonych zakresach testów nie zawsze jest możliwe. Powodzenie badań eksperymentalnych zależy także w dużej mierze od warunków pogodowych. Przeprowadzenie oceny wpływu wielu niewielkich zmian konstrukcyjnych zastosowanych wybiórko do poszczególnych układów pojazdu jest na ogół niemożliwe, ewentualnie wymagałoby znaczących nakładów czasowych oraz finansowych.

Wielu ograniczeń, wspomnianych powyżej, pozbawione jest postępowanie polegające na przeprowadzeniu badań symulacyjnych za pomocą zweryfikowanych eksperymentalnie modeli matematycznych. Postępowanie takie zastosowano przy realizacji projektu polegającego na ocenie wpływu wybranych zmian konstrukcyjnych na kierowność i stateczność samochodu patrolowo-interwencyjnego. Pracę tę realizowano w ramach projektu kierowanego przez autora [156]. Prezentowane wyniki publikowano w pracach [64, 65, 66, 154, 159].

5.2. Badania symulacyjne

5.2.1. Model fizyczny

Budowę modelu fizycznego samochodu patrolowo-interwencyjnego Dzik przedstawiono na rysunku 5.4. Zaznaczono na nim także środki mas brył modelu oraz przyjęte układy współrzędnych.

Niezależnymi współrzędnymi opisującymi ruch modelu są: przemieszczenia translacyjne \(x_{O1}, y_{O1}, z_{O1}\) określające położenie środka \(O_1\) masy bryły nadwozia w inercjalnym układzie odniesienia Oxyz, kąty \(\gamma_{1}, \gamma_{2}, \gamma_{3}\) opisujące ruch kulisty bryły nadwozia względem jej środka masy \(O_1\), są to – kąt odchylenia, przeciwczuł boczne i boczne, \(z_{O4}\) – współrzędna opisująca ruch środka \(O_4\) masy bryły nadwozia względem bryły nadwozia, odbywa się on w kierunku \(O_2Z_4\) układu \(O_2X_4h_4Z_4\); \(z_{O4} - \gamma_{1}\) – kąt przeciwczuł boczne bryły nadwozia względem bryły nadwozia, \(z_{O9}\) – współrzędna opisująca ruch środka \(O_9\) masy bryły przedniego mostu względem bryły nadwozia, odbywa się on w kierunku \(O_3Z_9\) układu \(O_3X_3h_3Z_3\); \(z_{O9} - \gamma_{1}\) – kąt przeciwczuł boczne bryły przedniego mostu względem bryły nadwozia; \(z_{O5}, z_{O6}, z_{O7}, z_{O8}\) – kąty obrotu kół jezdnych: tylnych (lewego i prawego), przednich (lewego i prawego).
Rys. 5.4. Model fizyczny samochodu patrolowo-interwencyjnego Dzik oraz przyjęte układy współrzędnych [59]

Charakterystyki sprężysto-łumiące zawieszenia, układu kierowniczego i kół ognionych odpowiadają rzeczywistym własnościom pojazdu. Są one nieliniowe. W opisie oddziaływań zewnętrznych i wewnętrznych między brylami modelu posłużono się z praktycznego punktu widzenia, siłami i momentami występującymi w elementach konstrukcyjnych pojazdu. Wynika to ze sposobu wprowadzania danych (odzwierciedlających własności elementów pojazdu) oraz łatwości interpretacji rezultatów obliczeń, ich interpretacji fizycznej. Znając punkty przyłożenia oraz wartości zredukowanego do nich wektora i momentu głównego obciążeń działających na daną bryłę modelu można (pamiętając o siłach bezwładności) rozpatrywać bezwzględny lub względny ruch tej bryły w odrębnym od pozostałej części modelu. Na rysunku 5.5 przedstawiono schemat obciążeń zewnętrznych działających na pojazd. Uwidioczniono stan dla kół prawej strony; dla lewej jest analogiczny.

Rezultatem działania sił i momentów aerodynamicznych jest wektor i moment główny zredukowany do środka masy O_1 bryły nadwozia (\mathbf{F}_{AO_1}, \mathbf{R}_{AO_1}). Wektor i moment główny sił w kontakcie koła jezdnego, zredukowany do środka śladu U_i, \mathbf{F}_i i \mathbf{R}_i ($i = 5, 6, 7, 8$), jest skutkiem działania wymuszeń wewnętrznych (momentu napędowego i hamowania, skrętu koła jezdnego), wymuszeń geometrycznych wynikających z błędów kształtu ognienia, wymuszeń bezwładnościowych pochodzących od niewyważenia kół jezdnych) oraz zewnętrznych (oporów toczenia, wymuszenia kinematycznego od nierównych wierzchni drogi). Na rysunku 5.5 zaznaczono masę bryły nadwozia m_i oraz jej trzy główne centralne momenty bezwładności I_{ix}, I_{iy}, I_{iz} względem osi układu $O_1x_iy_iZ_i$ traktowane jako główne centralne osie bezwładności tej bryły.
Usytuowanie przestrzenne osi sworznia zwrotnicy (osi zataczania) jest opisane (rys. 5.6) w układzie $O_1{x_1}{y_1}{z_1}$ sztywno związanym z bryłą nadwozia kątami: pochylenia (θ_p) i wyprzedzenia (φ_p); ponadto płaszczynna koła jest odchylona od osi sworznia o kąt θ_3 oraz o kąt φ_3 od pionu i φ_8 od kierunku normalnej do powierzchni kontaktu.

W tym przypadku płaszczynna P_b jest pozioma ($\varphi_8 = \varphi_3$), a kąt skrętu koła jest równy zeru. Na rysunku 5.5 nie uwzględniono odkształceń sprężystych układu kierowniczego.

Oddziaływanie kierowcy na pojazd opisuje, m.in., kąt obrotu kierownicy δ_c. Ramię przekładni kierownicy jest obracane o kąt α_c, będący funkcją δ_c, przelóżenia przekładni kierownicznej I_k oraz momentów stabilizujących R_{2c2}, R_{3c3} lewego i prawego koła jezdnego (zredukowanych do osi $O_1^{'c2}$, $O_1^{'c3}$). Uwzględniona jest zatem podatność kolumny i przekładni kierownicznej. Kąt skrętu koła wokół osi sworznia zwrotnicy α_{n3} jest funkcją α_c, zbieżności koła α_{c3} oraz odkształcenia sprężystego układu zwrotniczego, będącego funkcją momentów stabilizujących R_{2c2} i R_{3c3}. Funkcje występujące we wspomnianych zależnościach są określone eksperymentalnie lub wynikają z analizy własności geometrycznych i kinematycznych zawieszenia.

Rys. 5.5. Schemat obciążeń zewnętrznych działających na pojazd (uwidoczniono obciążenia dla kół prawej strony; dla lewej są analogiczne) [59]
Rys. 5.6. Usytuowanie osi sworznia zwrotnicy $O'_{3}O'_{1p}$ w układzie $O_{3}X_{3}Y_{3}$ związanym z bryłą nadwozia oraz koła ogumionego względem płaszczyzny p_{h} stycznej do nawierzchni drogi w punkcie kontaktu U_{h}. (na przykład koła prawego przedniego) [59]

Na rysunku 5.7 przedstawiono schemat obciążeń działających na koło jezdne (na przykładzie koła tylnego prawego) i bryły tylnego mostu zawieszenia zależnego. Na koło w ruchu obrotowym (tu kąt obrotu θ_{6}, moment bezwładności I_{6h}) działają wektor i moment główny sił w kontakcie opony z drogą ($\overline{P_{6}}$, $\overline{R_{6}}$), moment napędowy ($\overline{M_{n6}}$) i hamowania ($\overline{M_{h6}}$). Do środka koła O_{6} zredukowano wektor i moment główny sił niewyważenia ($\overline{P_{w6}}$, $\overline{R_{w6}}$). Na bryłę tylnego mostu działają w punktach C_{ki}: siła sprężysta S_{h}, tłumienia wiskotycznego T_{w6}, tarcia suchego T_{a6}, stabilizatora S_{a6}. Zaznaczono także siłę ciężkości $m_{4}g$ i moment napędowy $\overline{M_{n4}}$.
5.2.2. Model matematyczny

Model matematyczny ruchu badanego pojazdu jest układem równań różniczkowych zwyczajnych, wyprowadzonych zgodnie z formalizmem Lagrange’a II rodzaju [34]. Ich postać wyjściową przedstawia równanie (5.1):

\[\frac{d}{dt}\left(\frac{\mu E_k}{\mu l_i}\right) + \frac{\mu E_p}{\mu l_i} = Q_{qi}, \quad i = 1, 2, \ldots, n\]

gdzie:
- \(E_k\) – energia kinetyczna układu,
- \(E_p\) – energia potencjalna układu,
- \(q_i\) – i-ta współrzędna uogólniona,
- \(Q_{qi}\) – siła uogólniona, odpowiadająca i-tej współrzędnej uogólnionej,
- \(n\) – liczba stopni swobody układu.

Siły potencjalne (ciężkości, sprężyste) potraktowano jako siły zewnętrzne. Stały się zatem elementami składowymi sił uogólnionych. Podobnie z siłami tłumienia (turcja wiskotycznego i suchego).

Równania ruchu degenerują się do postaci:

\[\frac{d}{dt}\left(\frac{\mu E_k}{\mu l_i}\right) = Q_{qi}, \quad i = 1, 2, \ldots, n\]

Siły bezwładności wynikają z lewej strony równań ruchu. Siły uogólnione są obliczane jako efekt wpływu sił zewnętrznych działających na daną bryłę na przesunięciach.
przygotowanych. Dla brył, których ruch opisuje się względem bryły nadwozia, część sił wewnętrznych układu traktowana jest jako siły zewnętrzne, co ma istotne konsekwencje w postaci zależności opisujących siły uogólnione.

Ułożenie równań ruchu wymaga zatem, dla opisanych wcześniej modeli, poprawnego zdefiniowania energii kinetycznej i sił uogólnionych oraz wyrażenia ich jako funkcji wektora współrzędnych i prędkości uogólnionych

\[q = \text{col}(q_1, q_2, ..., q_n) \]
\[\dot{q} = \text{col}(\dot{q}_1, \dot{q}_1, ..., \dot{q}_n) \]

Elementy wektora \(q \) wymieniono w opisie – rys. 5.7.

Równania ruchu (5.1, 5.2) można przedstawić w zwartej formie w zapisie macierzowym,

\[M(q) \ddot{q} = s(t,q,q) + u(t,q,q) - p(t,q,q) \]

gdzie: \(M(q) \) – funkcjonalna symetryczna macierz bezwładności \(n \times n \),
\(q, \dot{q} \) – wektory współrzędnych i prędkości uogólnionych (5.3), (5.4),
\(\ddot{q} = \text{col}(\ddot{q}_1, \ddot{q}_2, ..., \ddot{q}_n) \) – wektor przyspieszeń uogólnionych (5.6),
\(s = \text{col}(s_1, s_2, ..., s_n) \) – wektor sił bezwładności nie będących funkcjami przyspieszeń uogólnionych (5.7),
\(u = \text{col}(u_1, u_2, ..., u_n) \) – wektor sił uogólnionych (5.8),
\(p = \text{col}(p_1, p_2, ..., p_n) \) – wektor prawych stron (5.9).

Jest to układ n silnie nieliniowych równań różniczkowych zwyczajnych drugiego rzędu.

Prowadzenie badań na podstawie zbudowanego modelu wymaga określenia jego wiarygodności poprzez weryfikację eksperymentalną.

5.2.3. Weryfikacja eksperymentalna modelu symulacyjnego dwuosobowego lekkiego pojazdu opancerzonego

Obiektem badań eksperymentalnych był lekki pojazd opancerzony Dzik. Dane tego pojazdu określono na podstawie dokumentacji producenta podwozia oraz wykonawcy zabudowy użytkowej [93, 120].

Część parametrów wyznaczono drogą pomiarów w AMZ-Kutno oraz w laboratoriach WITPiS i Wojskowej Akademii Technicznej. Niektóre dane były szacowane z wykorzystaniem modeli geometrycznych zapisanych w pakietach CAx [157].

W trakcie weryfikacji eksperymentalnej modelu symulacyjnego wykorzystano aparatę pomiarową znajdującą się na wyposażeniu WITPiS. Układ pomiarowo-rejestrujący przedstawiono w pracy [157].

Wykonano test ruchu ustalonego po okręgu oraz wymuszenia skokowego na koło kierownicy z liniowym okresem narastania. Próby przeprowadzono na suchym podłożu asfaltowym. W przypadku ruchu ustalonego po okręgu moduł kąta obrotu koła kierownicy był stały i wynosił około 223°, prędkość pojazdu zwiększano od 10 km/h do 30 km/h. W teście z wymuszeniem skokowym prędkość pojazdu była stała i miała wartość 40 km/h oraz 45 km/h, odpowiednio dla skrętu w lewo i w prawo, a moduł kąta obrotu koła kierownicy narastał liniowo od 0 do około 150°. W trakcie badań symulacyjnych odtwarzano warunki badań eksperymentalnych, wprowadzając tę samą wartość kąta obrotu kierownicy i utrzymując prędkość pojazdu na zbliżonym poziomie.
Na rysunkach 5.8 i 5.9 przedstawiono porównanie wyników badań eksperymental-
ych i symulacyjnych dla ruchu po okręgu, przy skrécie w prawą i lewą stronę. Na
rysunku 5.8 zaprezentowano porównanie zalecanych przez normę ISO 4138 [39] cha-
rakterystyk: różnicy kąta obrotu kierownicy badanego samochodu i odpowiadającego
u pojazdu Ackermanna w funkcji przyspieszenia poprzecznego w układzie spo-
ziomowanym. Wyniki badań eksperymentalnych mieszczą się w obszarze zaznaczonym
szarym kolorem. Zauważalna jest dobra zgodność jakościowa i ilościowa wyników
symulacji i eksperymentu. Położenie ekstremów jest bardzo zbliżone, jest też wyraźna
asymetria charakterystyk dla skrętu w prawo i w lewo. Zarówno pojazd rzeczywisty, jak
i jego model wskazują na niepokojącą dla bezpieczeństwa ruchu postać prezentowanej
charakterystyki, a mianowicie jej zmienność i wyraźną nadsterowność pojazdu dla
przyspieszeń poprzecznych o module większym od 3 m/s².

Rys. 5.8. Różnica kąta obrotu kierownicy δ_k i kąta obrotu koła kierownicy δ_A pojazdu Ack-
ernanna w funkcji spoziomowanego przyspieszenia poprzecznego a_{ϕ}

Na rysunkach 5.9 i 5.10 przedstawiono, odpowiednio, zmiany kąta bocznego znos-
szenia pojazdu i kąta przechyłu bocznego bryły nadwozia w funkcji spoziomowanego
przyspieszenia poprzecznego. Zgodność wyników symulacji z eksperymentem jest
zdawalająca, zwłaszcza w przypadku kąta przechyłu bocznego bryły nadwozia. Zmiany
kąta bocznego znoszenia pojazdu są podobne jak w przypadku symulacji i ekspery-
mentu, ale widoczne są różnice jego wartości.

Na rysunku 5.11 przedstawiono porównanie trajektorii ruchu środka masy pojazdu
a płaszczyźnie drogi. Widoczna jest zadowalająca zgodność jakościowa i ilościowa.
Należy w tym miejscu przypomnieć, że łatwiej jest uzyskać zgodność symulacji i eks-
perymentu dla charakterystyk pochodnych analizowanych wielkości (prędkości, przys-
pieszeń) niż obliczonych wartości funkcji pierwotnych [58, 59].

Na rysunku 5.12 przedstawiono wymuszenia w postaci przebiegów czasowych ką-
ta obrotu kierownicy w trakcie testu wymuszenia skokowego na kole kierownicy
z liniowym okresem narastania (test zbliżony do zalecanego w normie ISO 7401 [40]).
Rys. 5.9. Kąt bocznego znoszenia β w funkcji spoziomowanego przyspieszenia poprzecznego a_{yb}

Rys. 5.10. Kąt przechyłu bocznego bryły nadwozia φ w funkcji spoziomowanego przyspieszenia poprzecznego a_{yb}

Rys. 5.11. Trajektorie ruchu środka masy pojazdu O₁ dla ruchu w stronę prawą (a) oraz dla ruchu w stronę lewą (b)
Rys. 5.12. Przebieg czasowy wymuszenia – kąta obrotu kierownicy α_k dla ruchu w stronę lewą (a) oraz dla ruchu w stronę prawą (b)

Na rysunkach 5.13÷5.18 przedstawiono porównanie wyników eksperymentu i symulacji, otrzymanych dla wymuszeń na kole kierownicy, takich jak na rysunku 5.12. Rysunki 5.13 i 5.15 przedstawiają przebiegi czasowe spoziomowanego przyspieszenia poprzecznego, rysunku 5.13 i 5.16 – prędkości kątowej odchylania, a rysunki 5.15 i 5.17 – kąta bocznego znoszenia środka masy pojazdu.

Część „a” każdego z tych rysunków ilustruje porównanie wymienionych wielkości dla tych samych chwil wymuszeń (rys.5.16). Widoczne jest wyraźne przesunięcie fazowe prezentowanych wyników. Rezultaty symulacji wyprzedzają w czasie τ wyniki eksperymentu o wartość τ ze stosownym indeksem identyfikującym prezentowaną wielkość. Takie przesunięcie fazowe wynika z trzech przyczyn: stanów nieustalonych ogólnego zjawiska nabiegania opony, dynamiki układu kierowniczego oraz charakterystyki fazowej wspomaganej przekładni kierowniczego (wyodrębnionej z własności dynamicznych układu kierowniczego). Wszystkie z wymienionych zjawisk nie są uwzględniane w pierwotnej postaci modelu symulacyjnego. Jeżeli jednak zostaną wprowadzone funkcje opisujące zmiany kątów skrętu kół (lewego α_2 i prawego α_3) względem kąta obrotu koła kierownicy α_k o τ_2 i τ_3 w postaci:

$$\alpha_2 = \alpha_k(t - \tau_2) \quad (5.10)$$

$$\alpha_3 = \alpha_k(t - \tau_3) \quad (5.11)$$

to wyniki symulacji na tle eksperymentu będą miały postać zbliżoną do przedstawionej w części „b” (rys. 5.12÷5.17). Trudność wykonania tego typu operacji wynika z faktu zależności wspomnianych przesunięć fazowych τ_2 i τ_3 od prędkości pojazdu i częstotliwości zmian kąta obrotu kierownicy α_k. Jednak efekt końcowy jest bardzo zachęcający: zgodność wyników symulacji z eksperymentem (poza przebiegiem kąta bocznego znoszenia pojazdu – rys. 5.15) jest bardzo dobra.
Rys. 5.13. Przebieg czasowy spoziomowanego przyspieszenia poprzecznego a_{xy} bez korekcji (a) oraz z korekcją (b)

Rys. 5.14. Przebieg czasowy prędkości kątowej odbicia ψ_1 bez korekcji (a) oraz z korekcją (b)

Rys. 5.15. Przebieg czasowy kąta bocznego znoszenia β bez korekcji (a) oraz z korekcją (b)
Przedstawione wyniki weryfikacji eksperymentalnej modelu symulacyjnego ruchu dwuosiowego lekkiego pojazdu opancerzonego dla dwóch typowych manewrów (ruchu po okręgu i wymuszenia skokowego na kole kierownicy z liniowym okresem narasta-
nia) uznano za zadowalające. Zaprezentowany model może być zatem stosowany w trakcie obliczeń wspomagających konstrukcję lub modernizację badanego pojazdu rzeczywistego.

Kolejnym krokiem było wykonanie badań symulacyjnych z wykorzystaniem opracowanego i zweryfikowanego modelu, w celu oceny wpływu wybranych zmian konstrukcyjnych pojazdu na jego wybrane własności w ruchu krzywoliniowym.

Mnogość przewidzianych wersji wiąże się z szerokim zakresem zmienności parametrów inercyjnych pojazdu (masy oraz momentów bezwładności). To samo dotyczy położenia środka ciężkości samochodu. Jedynym ograniczeniem może być w tym przypadku dopuszczalna asymetria obciążenia kół strony lewej i prawej. Wartości dwóch pozostałych parametrów (wysokości środka masy i jego odległości od osi przedniej) mogą się natomiast zmieniać w znacznie większym stopniu.

Ze względu na specyficzną przeznaczenie pojazdu, może wystąpić potrzeba chwilowego jego przeciążenia. Warunkom bojowym mogą również towarzyszyć okoliczności, w których niemożliwe będzie prawidłowe rozmięśczenie przewożonego ładunku. W sytuacjach wyjątkowych nie należy także wykluczać doraźnej zmiany przeznaczenia pojazdu. Szczególnie groźne może być duże przesunięcie środka masy samochodu względem jego wzdłużnej płaszczyzny symetrii. Wykonywanie gwałtownych manewrów na niejednorodnym podłożu w połączeniu ze znaczną prędkością pojazdu, może być w tym przypadku bardzo niebezpieczne. Parametry ogumienia mają bowiem znaczną wpływ na charakterystykę kierowności. Opony współczesnych samochodów charakteryzują się korzystnymi wartościami współczynnika odporności na boczne znośenie, nawet w przypadku zastosowania opon niskociśnieniowych. Właściwy dobór ciśnienia w ogumieniu kół tylnych i przednich umożliwia osiągnięcie odpowiedniej podsterowności pojazdu.

Ze względu na charakterystyczne przeznaczenie tego pojazdu, może wystąpić potrzeba dostosowania jego właściwości do specyficznych nawierzchni (szuter, podłoże piaskowe). Nie należy także wykluczać doraźnego zwiększenia mobilności samochodu poprzez zmniejszenie ciśnienia w oponach. Warunkom bojowym mogą również towarzyszyć okoliczności, w których konieczna będzie eksploatacja z uszkodzonym ogumieniem. Wykonywanie gwałtownych manewrów na niejednorodnym podłożu w połączeniu ze znaczną prędkością pojazdu może być w tym przypadku bardzo niebezpieczne. W pojeździe tym zastosowano dwa stabilizatory przechyłu bocznego oraz bezdłutkowe ogumienie z wkładką typu run-flat.
W celu określenia wartości parametrów granicznych kierowalności i stateczności, wykonano szereg symulacji dla różnych wariantów obciążenia samochodu. Badania prowadzono w warunkach odpowiadających zarówno stanom ustalonym, jak i nieustalonym.

5.2.4. Parametry modelu symulacyjnego

Nominalne wartości parametrów modelu odpowiadające pojazdowi LTV Dzik w wersji medycznej przedstawiono w pracach [64, 157].

Podczas analiz przyjęto także inne wartości parametrów modelu w postaci katalogu zmian, który obejmował: główny centralny moment bezwładności bryły nadwozia (z ładunkiem) względem osi pojazdu, odległość środka masy pojazdu od osi tylnej, odległość środka masy pojazdu od wzdłużnej płaszczyzny symetrii, wysokość środka masy bryły nadwozia (z ładunkiem) nad podłożem. Ze względu na znaczącą rolę parametrów ogumienia w kształtowaniu własności w ruchu krzywoliniowym pojazdu zmieniano także parametry opisujące opony – współczynniki odporności na boczne znoszenie opon przednich i tylnych. Ponadto zmieniano także sztywność stabilizatorów przedniego oraz tylnego. Wszystkie parametry dobierano tak, aby możliwa była ocena wpływu masy i położenia środka ciężkości samochodu LTV Dzik na jego wybrane własności w ruchu krzywoliniowym.

Własności badanego pojazdu w ruchu krzywoliniowym oceniano na podstawie wyników badań modelowych, przeprowadzonych zgodnie z testami:
- ruchu ustalonego po okręgu [39],
- wymuszenia skokowego na kół kierownicy [40].

W pierwszym teście symulowano ruch samochodu z prędkością 80 km/h, wprowadzając liniowy przyrost kąta obrotu kierownicy [58, 65]. Ze względu na konieczność zachowania warunków quasi-statycznych gradient zmian ostatniej wielkości nie przekraczał 0,035 rad/s (2°/s). Próby wykonywano dla obydwu kierunków obrotu koła kierownicy. Jeśli obiekt wykazywał tendencje do przewracania się na bok, badania przerwano w chwili odwrażania się dwóch wewnętrznych kół pojazdu od podłogi. W przypadku gdy do tego nie dochodziło, testy trwały dopóki duże opory skrętu nie doprowadziły do „zdiwienia silnika”, uniemożliwiając dalszą symulację ruchu ze stałą prędkością.

Jako podstawowe kryterium oceny pojazdu przyjęto charakterystykę jego sterowności [65].

Analizowano również zmiany modułów spoziomowanego przyspieszenia poprzecznego oraz kąta przechyłu bocznego bryły nadwozia, przy których nastąpiło odbijanie pierwszego i drugiego wewnętrznego koła pojazdu. Porównywano także minimalne wartości bezwzględne promienia toru ruchu środka masy bryły nadwozia w granicznych stanach ruchu.

Drugim testem był zbliżony do badania opisanego w normie ISO 7401 [40]. Zastosowano jednak odmienne parametry ruchu samochodu oraz inne wymuszenie. Podczas próby określano najwyższą prędkość w ruchu prostoliniowym, dla której istnieje możliwość wykonania gwałtownego (w czasie 0,3 s) obrotu kierownicy o 90°, bez wywrócenia pojazdu. Analizowano zmiany maksymalnych wartości bezwzględnych spoziomowanego przyspieszenia poprzecznego oraz kąta przechyłu bocznego bryły nadwozia przed wywróceniem samochodu, symulując jego ruch w stronę lewą i prawą.

W obydwu testach prowadzono obliczenia dla pojazdu o parametrach nominalnych, a następnie zmieniając kolejno:
– masę całkowitą samochodu o 525 kg i o 1025 kg uzyskując wartość 6500 kg i 7000 kg (razem z masą pojazdu zwiększano także proporcjonalnie wartości momentów bezwładności bryły nadwozia z ładunkiem),
– odległość środka ciężkości od osi przedniej o ±0,1 m i o ±0,2 m, uzyskując jego przesunięcie do przerzu (wartości dodatniej i do tyłu (wartości ujemne),
– odległość środka masy od wzdłużnej płaszczyzny symetrii o ±0,05 m i o ±0,1 m uzyskując jego przesunięcie na stronę lewą (wartości dodatniej) i prawą (wartości ujemne),
– wysokość środka masy bryły nadwozia (z ładunkiem), tak aby uzyskać wartości mniejsze i większe od nominalnej,
– współczynniki odporności na boczne znoszenie opon przednich i tylnych w sposób równoczesny o ±10% i o ±20% (łącznie 4 warianty),
– relację współczynników odporności na boczne znoszenie opon przednich i tylnych wprowadzając zestawy odchyleń od wartości nominalnych (przód i tyl): (+20% i - 20%), (+10% i - 10%), (-10% i +10%), (-20% i +20%),
– współczynnik szybkości stabilizatora przedniego i tylnego w sposób równoczesny o ±50% i o ±100%, uzyskując w jednym z wariantów przypadek samochodu pozbałwionego takich elementów sprzężystych,
– relację współczynników szybkości stabilizatora przedniego i tylnego wprowadzającą zestawy odchyleń od wartości nominalnych (przód i tyl): (-100% i +100%), (-50% i +50%), (+400% i - 50%), (+100% i - 100%).

 Wyniki badań odpowiadające pojazdowi nominalnemu przedstawiono na rysunkach 5.18, 5.22, 5.25 i 5.27 oraz w tabelach 5.1 i 5.2. Charakterystykę sterowności w postaci przekroju różnicy kąta obrotu kierownicy samochodu rzeczywistego αₚ oraz kąta obrotu kierownicy pojazdu Ackermann aₐₐ jako funkcji spoziomowanego przyspieszenia poprzecznego aₚₕ (na przykład rys. 5.19) sporządzone są na podstawie rezultatów uzyskanych w teście pierwszym. Stanowi ona efekt dwóch symulacji – „w prawo” i „w lewo”. Ustalone warunki ruchu dotyczą przyspieszenia poprzecznego w zakresie od -4,3 m/s² do +4,3 m/s². Niewielkim zmianom ulega wówczas prędkość kątowa odchylania oraz kąt przechyłu boczno-użytecznego oraz kątów przechyłu bocznych bryły nadwozia. Taki quasi-ustalony stan ruchu osiągnięto dzięki wprowadzeniu bardzo wolnego przyrostu kąta obrotu kierownicy oraz utrzymywania stałej prędkości samochodu, mimo rosnących obciążeniach skrętu. W tej fazie ruchu pojazd jest neutralny (aₚₕ < 2,5 m/s²) lub lekko podsterowny dla manewru w lewo oraz silnie podsterowny podczas ruchu w prawo. Asymetria charakterystyki wynika z niezgodności kinematycznej ruchu roboczego zawieszienia i układu kierowniczego (zwłaszcza drążka wzdużnego). Ta niekorzystna własność samochodu ujawnia się silnie podczas manewru w lewo. Oznaką stanu nieustalonego (|aₚₕ| > 4,3 m/s²) jest nagła zmiana zachowania pojazdu. Początkowo staje się on bardzo podsterowny, a następnie równie mocno nadsterowny. Towarzyszy temu duży przechyl boczny bryły nadwozia, odfarbowanie się początkowo jednego, a następnie drugiego wewnętrznego koła jezdowego w konsekwencji wywrócenia samochodu. Wartości bezwzględne przyspieszenia poprzecznego, kąta obrotu kierownicy i kąta przechyłu bocznych bryły nadwozia odpowiadające tym stanom zamieszczone w tabeli 5.1. Cechą charakterystyczną jest fakt, że podczas ruchu w lewo odfarbowanie dwóch kół następuje niemal jednocześnie. Symulacja manewru w drugą stronę wskazuje na dużą wartość modułu kąta przechyłu bocznych bryły nadwozia, która odpowiada odfarbowaniu drugiego koła (|J| = 0,22585 rad ≈ 13°). Dla stanu nieustalonego widoczne jest duże zróżnicowanie wartości bezwzględnych promieni toru ruchu środka masy pojazdu, obliczanych na podstawie przyspieszenia.
poprzecznego w pierwszym przypadku i prędkości kątowej odchylania w drugim (tab. 5.2).

Tabela 5.1. Wyniki dla pojazdu nominalnego uzyskane podczas testu pierwszego [72]

<table>
<thead>
<tr>
<th>Wielkość oceniana</th>
<th>Jednostka</th>
<th>Wartość bezwzględna odpowiadająca odwrzaniu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>jednego koła</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ruch w lewo</td>
</tr>
<tr>
<td>Przyspieszenie poprzeczne [m/s²]</td>
<td>5,61 5,26 5,61 5,69</td>
<td>5,61 5,26 5,61 5,69</td>
</tr>
<tr>
<td>Kąt obrotu kierownicy [rad]</td>
<td>1,365 1,640 1,365 1,650</td>
<td>1,365 1,640 1,365 1,650</td>
</tr>
<tr>
<td>Kąt przechyłu bocznego [rad]</td>
<td>0,16571 0,14735 0,16571 0,22585</td>
<td>0,16571 0,14735 0,16571 0,22585</td>
</tr>
</tbody>
</table>

Tabela 5.2. Minimalne wartości bezwzględne promienia toru ruchu środka masy pojazdu uzyskane podczas testu pierwszego [66]

<table>
<thead>
<tr>
<th>Wielkość oceniana</th>
<th>Jednostka</th>
<th>Minimalna wartość bezwzględna w całej próbie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ruch w lewo</td>
</tr>
<tr>
<td>Promień toru ruchu środka masy pojazdu obliczany z przyspieszenia poprzecznego</td>
<td>[m]</td>
<td>79,15</td>
</tr>
<tr>
<td>Promień toru ruchu środka masy pojazdu obliczany z prędkości kątowej odchylania</td>
<td>[m]</td>
<td>57,65</td>
</tr>
</tbody>
</table>

Rezultaty odpowiadające drugiemu testowi przedstawiono w tabeli 5.3. Prędkość ruchu samochodu, przy której wykonanie manewru jest niemożliwe, wynosi 54 km/h i 63,5 km/h odpowiednio dla ruchu w lewo i w prawo. Duże zróżnicowanie prędkości (18%) potwierdza specyficzne własności pojazdu zaobserwowane w teście pierwszym. Moduły przyspieszenia poprzecznego oraz kąta przechyłu bocznego były nadwozia przyjmują zbliżone wartości dla obydwu kierunków obrotu koła kierownicy.

Tabela 5.3. Wyniki dla pojazdu o parametrach nominalnych uzyskane podczas testu drugiego [66]

<table>
<thead>
<tr>
<th>Wielkość oceniana</th>
<th>Jednostka</th>
<th>Wartość bezwzględna odpowiadająca wywróceniu pojazdu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>jednego koła</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ruch w lewo</td>
</tr>
<tr>
<td>Prędkość [km/h]</td>
<td>54,0 63,5</td>
<td>54,0 63,5</td>
</tr>
<tr>
<td>Przyspieszenie poprzeczne [m/s²]</td>
<td>5,27 5,34</td>
<td>5,27 5,34</td>
</tr>
<tr>
<td>Kąt przechyłu bocznego [rad]</td>
<td>0,15644 0,15536</td>
<td>0,15644 0,15536</td>
</tr>
</tbody>
</table>

Test pierwszy odwzorowano w 6 symulacjach, uzyskując charakterystyki sterowności przedstawione na rysunku 5.19. Masę pojazdu zwiększono do wartości określonych wcześniej w pracach [64, 157], nie zmieniając przy tym położenia środka ciężkości i innych parametrów obiektu badań. W ustalonych warunkach ruchu, wraz ze wzrostem obciążenia samochodu, zwiększa się jego podsterowność. Przejście w stan nieustalony następuje przy coraz to mniejszych przyspieszeniach poprzecznych i staje się mniej wyraźne. Z rysunku 5.20 wynika, że odwrzanie pierwszego i drugiego koła jednego następuje przy mniejszych wartościach bezwzględnych tej wielkości (zmiana od –4% do –9% dla ruchu w lewo i od około –0,5% do około –9,5% dla ruchu w prawo).
W większości analizowanych przypadków zwiększeniu masy pojazdu towarzyszy wzrost modułów kąta przechyłu bocznego bryły nadwozia, przy których poszczególne pneumatyki zaczynają tracić kontakt z podłożem (zmiana od około −3% do około +50% dla ruchu w lewo oraz od −26% do +27% dla ruchu w przeciwną stronę). Odwrotna relacja ma miejsce podczas manewru w prawo i dotyczy oderwania dwóch kół jezdnych. Przy obciążeniu większym od nominalnego małej moduły minimalnego promienia toru ruchu środka masy pojazdu obliczane na podstawie prędkości kątowej odchylania, jednak tylko podczas manewru w lewo. W pozostałych przypadkach występuje zależność przeciwna (wzrost od 2% do około 20%).

Wyniki uzyskane w drugim teście przedstawiono na rysunku 5.21. Zwiększenie masy samochodu w bardzo niewielkim stopniu powoduje zmiany prędkości pojazdu, przy której następuje jego wywrócenie (ΔV < 0,8%). Wraz ze wzrostem obciążenia samochodu maleją jednak wartości bezwzględne przyspieszenia poprzecznego towarzyszające oderwaniu się dwóch kół jezdnych od podłoża (zmiana od około −3% przy masie 6500 kg do około −6,5% przy masie 7000 kg). Bardziej znacząco rosną moduły kąta przechyłu bocznego bryły nadwozia (od 11% do 15% przy obciążeniu zwiększonym o 525 kg i o około 26% przy większej zmianie obciążenia).
Rys. 5.19. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego α_k i kąta obrotu kierownicy pojazdu Ackermanna $\alpha_{A,k}$ w funkcji spoziomowanego przyspieszenia poprzecznego a_{yp}. Wyniki dotyczą zmian masy całkowitej samochodu.
Rys. 5.20. Wpływ masy pojazdu na wartość parametrów granicznych kierowalności i stateczności podczas testu pierwszego
Rys. 5.21. Wpływ masy pojazdu na wartość parametrów granicznych kierowalności i stateczności podczas testu drugiego
5.2.5. Badania wpływu położenia wybranych zmian konstrukcyjnych na zachowanie pojazdu w ruchu krzywoliniowym

Ocena wpływu położenia środka masy oraz parametrów inercyjnych

Na rysunku 5.22 przedstawiono charakterystyki sterowności, stanowiące rezultat 10 symulacji odwzorowujących pierwszy test. Obliczenia dotyczą obydwu kierunków obrotu koła kierownicy i 5 różnych położen wzdłużnych środka masy pojazdu, przy niezmienionych pozostałych parametrach obiektu. Przesuwanie środka ciężkości samochodu do przodu zwiększa jego tendencję do podsterowności.

W większości analizowanych przypadków ruchu ustalonego po okręgu obiekt wykazuje własności pojazdu silne podsterowne. Nadsterowność jest widoczna w przypadku samochodu z przesuniętym środkiem masy do tyłu i dotyczy niewielkich wartości przyspieszenia poprzecznego ($|\alpha| < 2.5 \text{ m/s}^2$).

Podczas manewru w prawo występuje ona tylko dla większej zmiany ocenianego parametru.

Wraz ze zmniejszeniem odległości środka masy od osi tylnej małe przedział przyspieszeń poprzecznych charakteryzujących stan ustalony ruchu pojazdu. Przesunięcie wzdłużne środka masy samochodu, w większości analizowanych przypadków (rys. 5.23), zmniejsza wartości bezwzględne przyspieszenia poprzecznego przy których następuje utrata kontaktu pierwszego i drugiego pneumatyka z podłożem (zmiana od 1% do 21% dla ruchu w lewo i od 6% do 25% dla ruchu w prawo). Maleją również moduły kąta przechyłu bocznego bryły nadwozia towarzyszące oderwaniu pierwszego koła jezdnego podczas ruchu w lewo (zmiana do −17%). Odmienna zależność dotyczy utraty kontaktu z podłożem przez drugie koło (wzrost od 2,5% do 39%). Dla manewru w prawo trudno wskazać jakiekolwiek prawdopodobieństwo ze względu na niewielkie zmiany wartości bezwzględnych kąta przechyłu bocznego bryły nadwozia. Moduły minimalnego promienia toru ruchu środka masy pojazdu rosną w przypadku zwiększenia odległości środka masy od osi tylnej (zmiana od 1% do 38%).

Z rezultatów uzyskanych podczas testu drugiego (rys. 5.24) wynika, że przesuwanie środka masy samochodu do tyłu powoduje zmniejszanie prędkości pojazdu, przy której następuje jego wywrócenie (zmiana od 10% do 21% dla ruchu w lewo oraz od 19% do 35% dla ruchu w prawo). W większości analizowanych przypadków zmiana położenia środka masy samochodu prowadzi do niewielkiego zmniejszania wartości bezwzględnych przyspieszenia poprzecznego, którym towarzyszy oderwanie dwóch kół jezdnych od podłoża (zmiany do około 4%). Odwrotna zależność dotyczy modułów kąta przechyłu bocznego bryły nadwozia (wzrost do około 40%).
Rys. 5.22. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego α_i i kąta obrotu kierownicy pojazdu Ackermanna $\alpha_\theta A$ w funkcji spoziomowanego przyspieszenia poprzecznego a_{pb}. Wyniki dotyczą zmian położenia środka masy samochodu w kierunku wzdłużnym.
Rys. 5.23. Wpływ położenia wzdłużnego środka masy pojazdu na wartość parametrów granicznych kierowności i stateczności podczas testu pierwszego.
Rys. 5.24. Wpływ położenia wzdłużnego środka masy pojazdu na wartość parametrów granicznego kierowalności i stateczności podczas testu drugiego.
Ocena wpływu położenia poprzecznego środka masy na wybrane własności pojazdu w ruchu krzywoliniowym

Dokonując analizy z wykorzystaniem testu pierwszego przeprowadzono łącznie 10 symulacji dla obydwu kierunków obrotu koła kierownicy. Obliczenia wykonano dla 5 różnych położen poprzecznych środka masy pojazdu, przy niezmienionych pozostałych parametrach obiektu. Na rysunku 5.25 widoczna jest wyraźna granica między stanem ustalonym a nieustalonym. Przemieszczanie środka masy w tę samą stronę, w którą odbywa się manewr, zwiększa zakres występowania warunków ustalonych. Charakterystyka sterowności przesuwa się w prawo i do dołu oraz w lewo i do góry, dla środka masy przemieszczanego odpowiednio w lewo i w prawo. Zachowanie zerowego przyspieszenia poprzecznego wiąże się z koniecznością utrzymywania odpowiedniej (niezrównoważonej) wartości kąta obrotu kierownicy. W razie zmiany położenia poprzecznego środka masy pojazdu następuje silne zróżnicowanie wartości bezwzględnych przyspieszenia poprzecznego i kąta przechyłu bocznego nadwozia, przy których odyrywanie jest pierwsze i drugie koło jezdne dla ruchu w lewo oraz prawą stronę (rys. 5.26). Podobny efekt ma miejsce w przypadku obliczeń modułów minimalnego promienia toru ruchu środka masy pojazdu.

Z rezultatów testu drugiego (rys. 5.27) wynika, że przesunięcie środka masy w tę samą stronę, w którą odbywa się manewr, powoduje zwiększenie prędkości wywrócenia pojazdu (zmiana od 7,5% do +16% dla ruchu w lewo i od –9% do +12% dla ruchu w prawo). Podobna zależność występuje w przypadku poszczególnych wartości bezwzględnych przyspieszenia poprzecznego. Odmienna relacja dotyczy modułów kąta przechyłu bocznego bryły nadwozia (zmiany od około 8% do 5,5% dla ruchu w lewo i od 7% do 10% dla ruchu w prawo).
Rys. 5.25. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego $\Delta \alpha$ i kąta obrotu kierownicy pojazdu Ackermanna α_A w funkcji spozmiomowanego przyspieszenia poprzecznego a_{ib}. Wyniki dotyczą zmian położenia środka masy samochodu w kierunku poprzecznym.
Rys. 5.26. Wpływ położenia poprzecznego środka masy pojazdu na wartość parametrów granicznych kierowalności i stateczności podczas testu pierwszego.
Rys. 5.27. Wpływ położenia poprzecznego środka masy pojazdu na wartość parametrów granicznych kierowalności i stateczności podczas testu drugiego
Ocena wpływu wysokości środka masy bryły nadwozia na wybrane własności pojazdu w ruchu krzywoliniowym

Na rysunku 5.28 przedstawiono wyniki 12 symulacji stanowiących rezultaty testu pierwszego. Obliczenia wykonano dla 6 różnych wartości ocenianego parametru i obydwu kierunków obrotu koła kierownicy. Wpływ wysokości środka masy bryły nadwozia na własności pojazdu w ruchu krzywoliniowym oceniano przy niezmienionych pozostałych parametrach obiektu. Obniżanie środka masy zmniejsza tendencję samochoodu do podsterowności. Zwiększa się za to przedział przyspieszeń poprzecznych, charakteryzujący warunki ustalone ruchu, przy czym przejście w stan nieustalony jest wyjątkowo widoczne we wszystkich analizowanych przypadkach. Podczas ruchu w lewo z przyspieszeniem poprzecznym do 2,5 m/s² pojazd nie jest nadsterowny tylko przy dwóch najwyższych położeniach środka masy bryły nadwozia.

Z rysunku 5.29 wynika, że wraz ze zmniejszaniem wysokości środka ciężkości rosną wartości bezwzględne przyspieszenia poprzecznego, odpowiadające oderwaniu pierwszego i drugiego koła jezdnego od podłoża (zmiana od −22% do +28%). Odwrotna zależność cechuje moduły kąta przechyłu boczowego bryły nadwozia oraz wartości bezwzględne minimalnego promienia toru ruchu środka masy pojazdu. W przypadku tego drugiego występują zmiany w zakresie od −75% do +50%. Pojazd nie przewraca się, jeżeli wysokość środka ciężkości bryły nadwozia (z ładunkiem) wynosi 0,8 m i 0,9 m, przy czym większa wartość dotyczy wyłącznie ruchu w lewo.

 Wyniki symulacji testu drugiego zamieszczono na rysunku 5.30. Wraz ze zwiększaniem wartości środka masy maleje prędkość oraz wartości bezwzględne przyspieszenia poprzecznego, od których wykonanie manewru bez przewrócenia pojazdu nie jest możliwe (zmiany odpowiednio od +18% do −12% oraz od +18% do −22%). Odmiana relacji występuje w przypadku modułów kąta przechyłu bocznego bryły nadwozia (zmiany od −12% do +17%). Przy najniższym położeniu środka ciężkości bryły nadwozia (z ładunkiem) samochód nie wywraca się, uzyskując w teście prędkość 120 km/h.

Uzyskane metodą symulacyjną rezultaty wskazują na bardzo istotne znaczenie parametrów inercyjnych oraz położenia środka ciężkości dwuosowego lekkiego pojazdu opancerzonego ze względu na jego własności w ruchu krzywoliniowym. Masa przewożonego ładunku oraz jego rozmieszczenie wpływają znacząco na wartości parametrów granicznych kierowalności i stateczności tego pojazdu. Otrzymane wyniki mogą być wykorzystane podczas wszelkich prac modernizacyjnych oraz opracowywania ogólnych zaleceń, w zakresie prawidłowego rozlożenia urządzeń dodatkowych i elementów wyposażenia samochodu. Rezultaty badań symulacyjnych można także uwzględnić na etapie szkolenia załóg pojazdu dwuosowego lekkiego pojazdu opancerzonego, informując kierowców o maksymalnych prędkościach w różnych warunkach ruchu.
Rys. 5.28. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego α_k i kąta obrotu kierownicy pojazdu Ackermanna $\alpha_{a,k}$ w funkcji spoznionego przyspieszenia po-przecznego a_{\perp}. Wyniki dotyczą zmian wysokości środka masy bryły nadwozia (z ładunkiem)
Rys. 5.29. Wpływ wysokości środka masy bryły nadwozia (z ładunkiem) na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu pierwszego
Rys. 5.30. Wpływ wysokości środka masy bryły nadwozia (z ładunkiem) na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu drugiego
Ocena wpływu wybranych parametrów ogumienia

Przeprowadzono ocenę wpływu równoczesnej zmiany współczynników odporności na boczne znoszenie opon przednich i tylnych na wybrane własności pojazdu w ruchu krzywoliniowym. Test pierwszy odwzorowano w 10 symulacjach, uzyskując charakterystyki sterowności przedstawione na rysunku 5.31. Współczynniki odporności opon na boczne znoszenie zmieniano równocześnie, przyjmując za każdym razem identyczne wartości dla kół osi przedniej i tylnej. Pozostałe parametry obiektu badań odpowiadały pojazdowi nominalnemu. W ustalonych warunkach ruchu, wraz ze zmniejszaniem współczynnika odporności opon na boczne znoszenie, maleje tendencja samochoodu do podsterowności. Przy wartościach tego parametru mniejszych od nominalnej, podczas ruchu w lewo z przyspieszeniem poprzecznym do 2,5 m/s², pojazd staje się wyraźnie nadsterowany. Przejście w stan nieustalony następuje nieco wcześniej i staje się mniej wyraźne. Z rysunku 5.32 wynika, że najmniejsze zmiany modułów analizowanych wielkości odpowiadają symulacji ruchu samochodu z ogumieniem o największej odporności na boczne znoszenie. Podobna sytuacja występuje przy zmniejszeniu ocenianego parametru o 10% względem wartości nominalnej. Ostatnie spostrżenie dotyczy jednak wyłącznie manewru w lewo. W pozostałych przypadkach trudno wskazać jakiekolwiek prawidłowości. Zróżnicowanie wartości bezwzględnych minimalnego promienia toru ruchu środka masy pojazdu oraz kąta przechyłu bocznego i przyspieszenia poprzecznego, przy których następuje oderwanie pierwszego i drugiego koła jezdniego, jest natomiast znacznie większe (zmiany odpowiednio od –14% do +11%, od –30% do +27% oraz od –12% do +5%).

Wyniki uzyskane w drugim teście przedstawiono na rysunku 5.33. W większości analizowanych przypadków wraz ze wzrostem współczynnika odporności opon na boczne znoszenie rośnie nieznacznie prędkość samochoodu, przy której następuje jego wywrócenie (zmiany od –3% do +7,5%). Wpływ ocenianego parametru na zmiany wartości bezwzględnych dwóch pozostałych wielkości jest jeszcze mniejszy. Szczególnie małe różnice dotyczą spoznianego przyspieszenia poprzecznego.
Rys. 5.31. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego α_k i kąta obrotu kierownicy pojazdu Ackermanna α_{A_k} w funkcji spoziomowanego przyspieszenia poprzecznego a_{\perp}. Wyniki dotyczą równoczesnej zmiany współczynników odporności na boczne zanoszenie opon przednich i tylnych.
Rys. 5.32. Wpływ równoczesnej zmiany współczynników odporności na boczne znoszenie opon przednich i tylnych na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu pierwszego
Rys. 5.33. Wpływ równoczesnej zmiany współczynników odporności na boczne zносzenie opon przednich i tylnych na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu drugiego
Ocena zmian relacji współczynników odporności na boczne znoszenie opon przednich i tylnych na wybrane własności pojazdu w ruchu krzywoliniowym

Na rysunku 5.34 przedstawiono charakterystyki sterowności, stanowiące rezultat 10 symulacji odwzorowujących test pierwszy. Obliczenia dotyczą obydwa kierunków obrębu koła kierownicy i 5 różnych wariantów zróżnicowania odporności na boczne znoszenie pneumatyków przednich i tylnych, przy niezmienionych pozostałych parametrach obiektu. Zmniejszanie współczynnika charakteryzującego koła osi przedniej, przy odwrotnej zmianie jego wartości dla kół osi tylnej, powoduje zwiększenie tendencji pojazdu do podsterowności.

Wpływ na charakterystykę sterowności jest bardzo silny. Nie zmienia się przy tym zakres przyspieszeń charakteryzujących stan ustalony ruchu samochodu. W przypadkach, gdy odporność na boczne znoszenie opon przednich jest mniejsza niż tylnych, pojazd jest podsterowany. Odwrotnej relacji towarzyszy z kolei zdecydowana nadsterowność. Jedynie przy mniejszym zróżnicowaniu wartości ocenianego parametru w zakresie przyspieszenia poprzecznego od \(-3 \, \text{m/s}^2 \) do 0 (manewr w prawo) samochód jest lekko podsterowany. W większości analizowanych przypadków (rys. 5.35) wraz ze zmniejszaniem wartości współczynnika charakteryzującego koła osi przedniej i jednoczesnym jej zwiększaniem dla kół osi tylnej występuje tendencja wzrostu modułów minimalnego promienia toru ruchu środka masy pojazdu (zmiany od \(-18\% \) do \(+22\%\)). Podobna zależność dotyczy wartości bezwzględnych przyspieszenia poprzecznego, towarzyszących odwieraniu pierwszego i drugiego pneumatyka od podłoża podczas ruchu w prawo (zmiany od \(-9\% \) do \(+7\%\)). Odmienna sytuacja występuje w trakcie odwrotnego manewru. W przypadku zmian modułów kąta przechyłu były nadwozia trudno wskazać jakiekolwiek prawidłowości, natomiast różnice są znaczące (zmiany od \(-30\% \) do \(+33\%\)).

Z rezultatów uzyskanych w teście drugim (rys. 5.36) wynika, że zmniejszanie współczynnika charakteryzującego koła osi przedniej, przy odwrotnej zmianie jego wartości dla kół osi tylnej, powoduje znaczny wzrost prędkości (od \(-28\% \) do \(+35\%\)), przy których następuje wywrócenie pojazdu. Wpływ ocenianego parametru na zmiany wartości bezwzględnych dwóch pozostałych wielkości jest zdecydowanie mniejszy. Szczególnie małe różnice dotyczą spoziomowanego przyspieszenia poprzecznego. Samochód najbardziej podsterowany nie wywraca się uzyskując w teście prędkość 120 km/h.
Rys. 5.34. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego δ_k i kąta obrotu kierownicy pojazdu Ackermanna $\delta_k A$, w funkcji spoziomowanego przyspieszenia poprzecznego a_{sb}. Wyniki dotyczą zmian relacji współczynników odporności na boczne znoszenie opon przednich i tylnych.
Rys. 5.35. Wpływ zmian relacji współczynników odporności na boczne znoszenie opon przednich i tylnych na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu pierwszego.
Rys. 5.36. Wpływ zmian relacji współczynników odporności na boczne znoszenie opon przednich i tylnych na wartość parametrów granicznych kierowności i stateczności pojazdu podczas testu drugiego
Ocena wpływu równoczesnej zmiany współczynników sztywności stabilizatora przedniego i tylnego na wybrane własności pojazdu w ruchu krzywoliniowym.

W przypadku pojazdu bez stabilizatorów występuje wyraźne zakłócenie stanu ustalonego już przy \(a_{y,b} \approx 2 \text{ m/s}^2 \). Ze względu na duże przechyły boczne bryły nadwozia zaczynają pracować ograniczniki skoku zawieszenia. Pojawiają się wówczas nagle zmiany reakcji normalnych podłoża, od których zależą kąty bocznego zosnienia poszczególnych pneumatyków, a w konsekwencji postać charakterystyki sterowności samochodu. Nie dochodzi natomiast do odwrócenia drugiego wewnętrznych koła jezdniego (rys. 5.38) Wraz ze zwiększaniem sztywności stabilizatorów wzrastają wartości bezwzględne przyspieszenia poprzecznego, przy których następuje utrata kontaktu pneumatyków z podłożem (zmiany od \(-27\%\) do \(+14\%)\). Odmienne zależności dotyczą zmian modułów kąta przechyłu bocznego bryły nadwozia i minimalnego promienia toru ruchu środka masy pojazdu (zmiany odpowiednio od \(+65\%\) do \(-35\%\) oraz od \(+75\%\) do \(-13\%\)).

Rezultaty testu drugiego (rys. 5.39) potwierdzają spostrzeżenia zaobserwowane w taśmie pierwszym. Zmniejszaniu sztywności stabilizatorów towarzyszy tendencja wzrostowa maksymalnej prędkości w próbie (zmiany od \(-2\%\) do \(+42\%\)). Podobna relacja występuje przy zmianach wartości bezwzględnych kąta przechyłu bocznego bryły nadwozia (zmiany od około \(-30\%\) do \(+155\%\)). W przypadku zmian modułów przyspieszenia poprzecznego ma miejsce odwrotna zależność (zmiany od \(+5\%\) do \(-31\%\)).
Rys. 5.37. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego α_k i kąta obrotu kierownicy pojazdu Ackermanna α_A, w funkcji spoziomowanego przyspieszenia poprzecznego a_{\perp}. Wyniki dotyczą równoczesnej zmiany współczynników sztywności stabilizatora przedniego i tylnego.
Rys. 5.38. Wpływ równoczesnej zmiany współczynników sztywności stabilizatora przedniego i tylnego na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu pierwszego.
Rys. 5.39. Wpływ równoczesnej zmiany współczynników sztywności stabilizatora przedniego i tylnej na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu drugiego
Ocena zmian relacji współczynników sztywności stabilizatora przedniego i tylnego na wybrane własności pojazdu w ruchu krzywoliniowym

Na rysunku 5.40 przedstawiono wyniki 10 symulacji stanowiących rezultaty testu pierwszego. Obliczenia wykonano dla 5 różnych wariantów zróżnicowania współczynników sztywności stabilizatora przedniego i tylnego oraz obydwu kierunków obrotu koła kierownicy. Podczas badań nie zmieniano pozostałych parametrów obiektu. Jaka-

doświeczany zmiennych relacji współczynników sztywności stabilizatora przedniego i tylnego powoduje zdecydowane zmniejszenie przedziału przyspieszeń, dla którego występują

ustalone warunki ruchu pojazdu. Przejście w stan nieustalony staje się także mniej wyraźne. Charakterystyka sterownictwa samochodu w warunkach quasi-ustalonych ma podobny przebieg we wszystkich rozważanych przypadkach. Z rysunku 5.41 wynika, że wraz z odstrajaniem sztywności stabilizatorów od wartości nominalnej zmniejszają się

moduły przyspieszenia poprzecznego, przy których pierwsze koło jedno traci kontakt z podłożem (zmiana od –9% do –35%). W większości przypadków rosną wartości bez

względne przyspieszenia poprzecznego, odpowiadające odcieniu drugiego koła jedn

ego lub nie odrywa się ono wcale. Moduły kąta przechyłu boczne bryły nadwozia zmieniają się w zakresie od –19% do +103%. Wraz ze wzrostem sztywności stabilizato-

ra przedniego, przy spadku sztywności stabilizatora tylnej rosną wartości bezwzględne minimalnego promienia toru ruchu środku masy pojazdu. Tylko w trzech spośród dziesięciu analizowanych przypadków nastąpiło odczenie drugiego wewnętrznych koła

samochodu.

Wyniki symulacji testu drugiego zamieszczono na rysunku 5.42. Wraz ze zmianą zróżnicowania współczynników sztywności stabilizatorów (zwiększaniem dla przedniego i zmniejszaniem dla tylonego) wzrasta prędkość samochodu, powyżej której wykonana

zobowiązuje się niemożliwe (zmiany od –23% do +39%). W przypadku przyspieszenia poprzecznego jakakolwiek zmiana relacji sztywności stabilizatorów powoduje zmniejszenie wartości bezwzględnych tej wielkości od 5% do 28%. Wraz z tym, natomiast moduły kąta przechyłu boczne bryły nadwozia (zmiany od 40% do 140%).

Uzyskane metoda symulacyjną rezultaty, wskazują na bardzo istotne znaczenie ocenianego parametru opon ze względu na własności samochodu dwuosobowego lekkiego pojazdu opancerzonego w ruchu krzywoliniowym. Sztywność stabilizatorów wpływa znacząco na wartości parametrów granicznych kierowalności i stateczności tego pojazdu. Otrzymane wyniki mogą być wykorzystane podczas wszelkich prac modernizacyjnych oraz opracowywania ogólnych zaleceń w zakresie eksploatacji samochodu przy obniżonym ciśnieniu w ogumieniu. Rezultaty badań symulacyjnych można także uwzględnić na etapie szkolenia załóg pojazdu dwuosobowego lekkiego pojazdu opancerzonego, informując kierowców o maksymalnych prędkościach w różnych sytuacjach drogowych.
Rys. 5.40. Przebieg różnicy kąta obrotu kierownicy samochodu rzeczywistego α_k i kąta obrotu kierownicy pojazdu Ackermanna α_{kA} w funkcji spoziomowanego przyspieszenia poprzecznego a_{yp}. Wyniki dotyczą zmian relacji współczynników sztywności stabilizatora przedniego i tylnego.
Rys. 5.41. Wpływ zmian relacji współczynników sztywności stabilizatora przedniego i tylnego na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu pierwszego
Zmiana sztywności stabilizatora przedniego/tylnego (P/T) $k_{stP/T}$ [N/m]

Zmiana prędkości maksymalnej V [%]

Zmiana modułu przyspieszenia poprzecznego $|a_K|$ [%]

Zmiana modułu kąta przechyłu bocznego $|\alpha|$ [%]

Rys. 5.42. Wpływ zmian relacji współczynników sztywności stabilizatora przedniego i tylnego na wartość parametrów granicznych kierowalności i stateczności pojazdu podczas testu drugiego
5.3. Podsumowanie rozdziału

Przedstawione w rozdziale 5 badania eksperymentalne oraz symulacyjne wykazały możliwość prowadzenia oceny wpływu zmian konstrukcyjnych (zgodnie z metodyką prezentowaną w rozdz. 4) w przypadku dwuosowych lekkich pojazdów opancerzonych. Mankamentem podczas wykonywania badań eksperymentalnych realizowanych w ograniczonym czasie jest niewielka liczba analizowanych parametrów pojazdu, uzależniona od posiadanej aparatury oraz możliwości ingerencji w konstrukcję pojazdu przy jej instalowaniu (podrozdz. 5.1). Ograniczeniem są kwestie organizacyjne oraz związane z bezpieczeństwem. Wspomniane mankamenty nie występują w badaniach symulacyjnych, które umożliwiły dość szeroką ocenę wpływu różnych zmian konstrukcyjnych na bezpieczeństwo badanego pojazdu wojskowego (podrozdz. 5.2).
6. BADANIA CZTEROOSIOWYCH ŚREDNICH POJAZDÓW OПANCERZONYCH

6.1. Badania eksperymentalne

Podobne postępowanie do prezentowanego w rozdziale 5 przeprowadzono dla innego pojazdu wojskowego. Obiektem badań eksperymentalnych był kołowy transporter opancerzony Rosomak w wersji medycznej przedstawiony na rysunku 6.1.

Rys. 6.1. Pojazd AMV 8x8 Rosomak w wersji WEM MED

Opis badań, a także ich rezultaty przedstawiono w pracy [177]. W rezultacie prowadzonych badań eksperymentalnych uzyskano charakterystyki określające zachowanie pojazdu w testach jazdy po okręgu oraz podwójnej zmianie pasa ruchu. Pozwoliły one określić charakterystykę kierowalności, stateczności dynamicznej oraz ocenę wpływu umiejętności indywidualnych kierowcy na wspomniane własności ruchowe pojazdu. Przeprowadzone badania pozwoliły na porównanie wpływu wyboru osi pojazdu na charakterystykę kierowalności pojazdu Ackermanna.

Podejście do zagadnienia badań eksperymentalnych kierowalności i stateczności złożonego obiektu jakim jest wojskowy pojazd kołowy w postaci 4-osiowego średniego pojazdu opancerzonego, wykazało szereg trudności związanych przede wszystkim z dostępnością do poszczególnych systemów obiektu oraz ograniczoną możliwość interwencji w jego strukturę. Ponadto wspomniane badania eksperymentalne nie pozwalały na ocenę skuteczności w celu poprawy bezpieczeństwa ruchu zastosowania systemów ABS oraz EBS, a także hydropneumatycznego zawieszenia. Badania eksperymentalne okazały się drogie, czasochłonne i niekiedy niebezpieczne, szczególnie w zakresie uzyskiwanych granicznych parametrów bezpieczeństwa ruchu pojazdu, wykonywanych przy stanach nieustalonych. Ich zakres może być ograniczony, jeżeli prowadzący dysponuje modelem matematycznym ruchu i dynamiki pojazdu oraz programem symula-

6.2. Badania symulacyjne

6.2.1. Model fizyczny

Model teoretyczny dowolnej struktury składa się z reguły z modelu fizycznego, matematycznego oraz symulacyjnego. Opis matematyczny w postaci równań różniczkowych dla każdej zmiennej umożliwia jednocześnie bardzo łatwe przejście do modelu symulacyjnego. Model taki to współczesnie odpowiedni program komputerowy, pozwalający na numeryczne całkowanie równań różniczkowych modelu matematycznego z możliwością obserwacji i rejestrowania w funkcji czasu wartości poszczególnych zmiennych stanu i wielkości wyjściowych.

Podczas modelowania pojazdu typu kołowy transporter opancerzony posłużyło się ogólnymi charakterystykami wyznaczonymi na pojeździe rzeczywistym, którym był wówczas transporter opancerzony obecnie w armii polskiej.

Podstawowe elementy samochodu jako układu mechanicznego to: sztywny kadłub posadowiony na ramie, silnik z układem napędowym oraz układ jezdny w postaci 8 kół jezdnych z niezależnym zawieszeniem. Pominięto za to istotne odzajdowywania, założono jednorodność materiału oraz pominięto odkształcenia (mas) elementów [49, 184].

Opracowując model fizyczny pojazdu bojowego przyjęto następujące założenia:
- składa się on z kadłuba, osi kół jezdnych (z których każde ma możliwość wykonywania skręćki), wahaczy górnych i dolnych,
- zmiany masy poszczególnych brył, wynikające np. ze zużycia paliwa, są niewielkie, co pozwala przyjąć masy jako stałe,
- dwozie jest bryłą sztywną o znanej masie i masowych momentach bezwładności,
- elementy sprężyste oraz tłumiące są elementami bezmasowymi,
- pojazd wykonuje małe drgania wokół położenia równowagi statycznej,
- nałożone na układ więzy są holonomiczne, sklernomiczne i obustronne,
- prędkość przemieszczania pojazdu jest stała.

Podczas modelowania przyjęto układ współrzędny związany ze środkiem ciężkości całego pojazdu (rys. 6.2).
W modelu wyróżniono łącznie 9 brył, w tym:

- kadłub: posiadający możliwość przesunięć wzdłuż 3 osi oraz obrotów wokół nich,
- 4 koła skrętne (pierwszej i drugiej osi), posiadające możliwość przesunięć pionowych oraz przemieszczeń kątowych względem kadłuba,
- 4 koła trzeciej i czwartej osi posiadające możliwość przesunięć pionowych z jednoczesną możliwością wykonywania skrętów; podczas dalszej wstępnej weryfikacji wszystkich koł nie będą wykonywały przemieszczeń kątowych względem kadłuba.

W modelu zostały uwzględnione wymuszenia:

- w postaci momentu obrotowego przykładanego do osi przedniej mającego na celu poruszanie się pojazdu zadaną prędkością,
- w postaci przemieszczenia kątowego kół osi pierwszej i drugiej względem kadłuba mające na celu wywołanie manewru skrętu.

Model utworzony w programie DADS jest zapisany w pliku *.def, w którym przechowywane są cztery typy podstawowych informacji (rys. 6.3):

- elementy modelu DADS, takie jak układy współrzędnych, bryły, wiązki, siły i ograniczenia,
- informacje oglądzie i otoczeniu – kolor otoczenia, punkt i kąt obserwacji modelu, itp.,
- informacje o hierarchii animacji – które elementy geometrii przypisane są do których brył,
- gabaryty figur geometrycznych.

Rezultaty modelowania mogą być przedstawiane w postaci przebiegów czasowych wybranych wielkości, bądź za pomocą animacji komputerowej przedstawiającej zachowanie się całego układu z punktu widzenia „obserwatora”.

Rys. 6.2. Model fizyczny pojazdu wraz z przyjętymi układami współrzędnych
Rys. 6.3. Etapy modelowania w programie DADS

Na rysunku 6.4 przedstawiono model zawieszenia koła (wraz z widocznymi wahaczami górnym i dolnym) stworzonego w programie DADS wraz z zaznaczonymi charakterystycznymi układami współrzędnych, natomiast na rysunkach 6.5 i 6.6 przedstawiono zamodelowany układ jezdny wraz z pomocniczymi układami współrzędnych oraz pojazdu AFV zamodelowanego w programie DADS.

Rys. 6.4. Widok zawieszenia koła AFV zamodelowanego w programie DADS
Rys. 6.5. Podwozie pojazdu wraz z układami pomocniczymi

Rys. 6.6. Pojazd zamodelowany w programie DADS
6.2.2. Model matematyczny

Opracowanie modelu komputerowego 4-osiowego średniego pojazdu opancerzonego umożliwia symulację ruchu dla dokonywanych zmian konstrukcyjnych, jak również służy do oceny wybranych parametrów dynamicznych przy określonych wymuszeniach.

Z całego szeregu dostępnych obecnie profesjonalnych programów do analizy dynamicznej i kinematycznej układów wielorasowych, takich jak np. DADS, ADAMS, SIMPACK, MEDYNA czy NEWEUL, do zamodelowania pojazdu kołowego użyto programu DADS.

Podczas pierwszego etapu dane modelu (m.in. położenie głównego i lokalnych układów współrzędnych, wymiary geometryczne, parametry bezwładnościowe i masowe, a także charakterystyki tłumiące i sprężyste) są wprowadzane i przedstawiane w postaci grupy elementów za pomocą graficznego interfejсу DADS Model. W następnej kolejności generowany jest, przy wykorzystaniu równania Lagrange’a drugiego rodzaju, układ równań różniczkowych opisujących ruch modelu. Następnie wyznaczane są położenie, prędkość i przyspieszenia poszczególnych elementów układu, a także wzajemne ich oddziaływanie (siły, momenty).

Elementami sprężysto- tłumiącymi uwzględnionymi w modelu pojazdu były amortyzatory gazowo-hydrauliczne o stałym współczynniku sprężystości oraz o charakterystyce tłumienia przedstawionej na rysunku 6.7.

W modelu uwzględniono prędkość układu kierowniczego, bez uwzględniania prędkości luzów układu kierowniczego (rys. 6.8). Charakterystyki ww. elementów zostały wyznaczone w sposób doświadczalny przez autora i zespół badawczy Wojskowego Instytutu Techniki Pancernej i Samochodowej.

![Rys. 6.7. Charakterystyka tłumienia amortyzatora gazowo-hydraulicznego](image-url)
6.2.3. Weryfikacja eksperymentalna modelu symulacyjnego

Na etapie weryfikacji modelu posłużywano się wynikami uzyskanymi podczas testu podwójnej zmiany pasa ruchu oraz ruchu po okręgu przy różnych prędkościach przejazdu w ramach badań przytoczonych w podrozdziale 6.1. Do modelu wprowadzano uzyskane podczas rzeczywistych pomiarów prędkości oraz położenia kątowe kierownicy. Podczas weryfikacji dokonywano oceny wartości uzyskiwanych przyspieszeń poprzecznych zmierzonych na siedzisku kierowcy z wartościami otrzymywanymi z modelu.

Przebiegi czasowe wymuszeń na kole kierownicy podczas badań eksperymentalnych zostały wykorzystane w badaniach symulacyjnych, a następnie ze sobą porównane [177].

Na rysunkach 6.9 i 6.10 przedstawiono uzyskane wartości z pomiarów oraz z badań symulacyjnych dla testu podwójnej zmiany pasa ruchu wykonywanych przy prędkości 85 km/h.

Rys. 6.9. Przebieg przyspieszeń poprzecznych uzyskanych podczas poszczególnych najazdów podczas testu podwójnej zmiany pasa ruchu
Mając na celu uzyskanie pewności co do wiarygodności opracowanego modelu, na kolejnym etapie weryfikacji porównywano przyspieszenia poprzeczne uzyskane podczas jazdy po okręgu ze stałą prędkością. Wyniki przedstawiono na rysunkach 6.11 oraz 6.12.

Uzyskane przebiegi przyspieszeń mogą stanowić podstawę do stwierdzenia, iż model funkcjonuje poprawnie i odzwierciedla obiekt rzeczywisty z zadowalającą dokładnością.

Weryfikując model autor rozprawy uwzględniał całościowo wyniki badań symulacyjnych oraz poligonowych. Analizując wyniki uzyskane na etapie weryfikacji stwierdzono, że na pewien rozrzuć wyników może mieć wpływ występowanie luzów kierowniczych w obiekcie rzeczywistym, co nie jest uwzględniane w modelu komputerowym.
Rys. 6.11. Przykładowe przebiegi czasowe dla manewru skrętu w prawo \(v = 30 \text{ km/h} \): a) eksperyment, b) symulacja
6.2.4. Badania ogumienia

Badania symulacyjne zostały poprzedzone zebraniem danych do modelu. Autor wraz z zespołem realizował ten etap w przeważającej części na podstawie badań eksperymentalnych, w mniejszej części przy współudziale oprogramowania CAD/CAM. Szczególnie istotne dla odzwierciedlenia własności jezdnych było wyznaczenie parametrów do modelu koła ogumionego. Dane do modelowania przygotowano na podstawie wyników badań eksperymentalnych ogumienia. Badania eksperymentalne wykonano w warunkach laboratoryjnych. Ich efektem są charakterystyki sprężystości promieniowej oraz odporności ogumienia na znoszenie boczne. Szczególnym osiągnięciem, ze względu na unikalny charakter badań, jest wykonanie pomiarów dla różnych wartości
ciśnienia powietrza w kołach oraz dla charakterystycznych dla kołowych pojazdów wojskowych wkładek run flat, umożliwiających kontynuowanie jazdy z przebitym kołem. Wyniki badań eksperymentalnych stanowiły podstawię do wyznaczenia wartości współczynników:

- wielomianów opisujących przebieg charakterystyk promieniowych opony,
- modelu Dugoffa, który umożliwia wyznaczanie wartości siły bocznej przenoszonej przez koło w ustalonych warunkach ruchu,
- modelu IPG-Tire, który umożliwia uwzględnienie zjawiska nabiegania ogumienia, w modelu współpracy koła z podłożem.

Model Dugoffa umożliwia wyznaczanie wartości reakcji stycznych przenoszonych przez koło w złożonym stanie posilgu wzdłużnego i bocznego. Jest opisany za pomocą następujących zależności:

\[
F_x = \frac{c_x \ddot{Q}_x}{1 - s_x} \quad \text{dla } s_w \notin 0.5 \quad (6.1)
\]
\[
F_y = \frac{c_y \ddot{Q}_y}{1 - s_x} \quad \text{dla } s_w = 0.5 \quad (6.2)
\]

Dodatkowo obliczeniu podlegają wartości:

\[
s_w = \sqrt{\frac{c_x^2 \ddot{Q}_x^2 + c_y^2 \ddot{Q}_y^2}{m \ddot{Q}_x (1 - s_x)}} \quad (6.3)
\]
\[
m = m \ddot{Q}_x (1 - k \dddot{Q}_{sd}) \quad (6.4)
\]
\[
v_{sd} = v_s \sqrt{s_x^2 + s_y^2} \quad (6.5)
\]

W wyrażeniach zastosowano oznaczenia, które można zestawić w trzech grupach:
a) wielkości opisujące warunki ruchu koła:
\[
F_x \quad \text{ociążenie normalne koła},
\]
\[
t \quad \text{kąt znoszenia koła},
\]
\[
s_y \quad \text{poślizg boczny koła } (s_y = \tan \theta),
\]
\[
s_x \quad \text{poślizg wzdłużny koła},
\]
\[
v_s \quad \text{prędkość wzdłużna środka koła względem podłoża},
\]
\[
v_{sd} \quad \text{prędkość poślizgu koła},
\]
b) współczynniki modelu, charakteryzujące właściwości opony:

\[c_x \] – współczynnik wzdłużnej sztywności poślizgowej opony,
\[c_y \] – współczynnik poprzecznej sztywności poślizgowej opony,
\[m_\theta \] – współczynnik przyczynności przyłgowej wycinka elementarnego gumy bieźnika do podłoża,
\[k \] – współczynnik wpływu prędkości poślizgu na przyczynność gumy bieźnika do podłoża,

c) reakcje przenoszone przez koło:

\[F_x \] – reakcja wzdłużna przenoszona przez koło,
\[F_y \] – reakcja boczna przenoszona przez koło.

Współczynniki modelu, które są charakterystyczne dla poszczególnych typów ogumienia, można określić na podstawie wyników badań eksperymentalnych. Mają one sens fizyczny, dlatego mogą być wykorzystane również do oceny i porównania właściwości badanych opon. Znaczenie poszczególnych współczynników modelu w kształconaniu charakterystyki odporności koła na znoszenie boczne, przy ustalonej wartości obciążenia normalnego \(F_z \) i prędkości środka koła względem podłoża \(v_k \), przedstawiono na rysunku 6.13.

Współczynnik bocznej sztywności poślizgowej \(c_y \) wpływa na kąt nachylenia charakterystyki odporności koła ogumionego oraz na znoszenie boczne w zakresie niskich wartości kąta znoszenia (rys. 6.13a). W ustalonych warunkach ruchu koła jego wartość zależy przede wszystkim od konstrukcji powłoki opony. W zakresie wartości kąta znoszenia bliskich zero jego wartość jest praktycznie taka sama jak współczynnik odporności opony na znoszenie boczne \(K_\theta \).

Współczynnik przyczynności przyłgowej elementarnego wycinka gumy bieźnika do podłoża \(\mu_0 \) wpływa na maksymalną wartość reakcji bocznej przenoszonej przez koło (rys. 6.13b). Wartość współczynnika jest praktycznie zawsze większa od współczynnika przyczynności opony do podłoża. Charakteryzuje on właściwości tribologiczne skojarzenia bieźnik-podłoże, które zależą zarówno od właściwości gumy bieźnika, jak i jego konstrukcji.

Współczynnik wpływu prędkości poślizgu koła na przyczynność gumy bieźnika do podłoża \(k \) wpłynę na wrażliwość opony na zmiany przyczynności gumy bieźnika do podłoża w zależności od zmian prędkości środka koła \(v_k \) oraz poślizgu wzdłużnego i bocznego koła. Wpływa on na przebieg charakterystyki w zakresie wysokich wartości kąta znoszenia (rys. 6.13c). Umożliwia uwzględnienie wpływu prędkości toczenia koła \(v_k \) na wartości przenoszonych sił stycznych w zakresie wysokich wartości poślizgu.

Rys. 6. 13. Wpływ współczynników modelu Dugoffa na przebieg charakterystyki odporności koła na znoszenie boczne
Zastosowanie modelu Dugoffa wymaga przygotowania danych w postaci wartości współczynników \(c_x, c_y, m_y \) i \(k \). Można je uzyskać dopasowując rezultaty obliczeń modelowych do charakterystyk rzeczywistego koła poprzez dobór wartości jego współczynników. Uwzględniając cel pracy potrzebne są charakterystyki poszczególnych typów opon wyznaczone w szerokim zakresie zmian wartości kąta znoszenia, obciążenia normalnego koła oraz prędkości środka koła względem podłoża w warunkach czystego znoszenia bocznego. Wyznaczone wartości współczynników modelu umożliwiają nie tylko odtworzenie charakterystyk ogumienia, ale również sparametryzowanie ich właściwości. Pozwalają one na wzajemne porównanie właściwości różnych typów ogumienia określonych dla podobnych warunków ruchu.

Opis modelu IPG-TIRE

Model IPG-TIRE w wersji podstawowej jest opisany następującym równaniem:

\[
F_y(t) = F_y - t_n \dot{F}_y(t)
\]

W równaniu zastosowano następujące oznaczenia:
- \(F_y \) – reakcja boczna przenoszona przez koło w ustalonych warunkach ruchu,
- \(F_y(t) \) – chwilowa wartość reakcji bocznej przenoszonej przez koło, podczas procesu jego nabiegania,
- \(\dot{F}_y(t) \) – pochoda względem czasu funkcji opisującej przebieg zmian wartości reakcji bocznej \(F_y \) przenoszonej przez koło w czasie,
- \(t_n \) – czas nabiegania (stała czasowa procesu nabiegania).

W zasadzie jest to model opisujący właściwości dynamiczne typowego elementu inercyjnego, stosowanego w układach automatyki. Czas nabiegania \(t_n \) jest to właściwie stała czasowa, która charakteryzuje tempo przyrostu wartości reakcji bocznej \(F_y(t) \), aż do jej ustalenia na poziomie wartości \(F_y \), jaką koło przenosi w ustalonych warunkach ruchu (rys. 6.14).

![Krzywa nabiegania koła ogumionego podczas skokowej zmiany wartości kąta znoszenia – interpretacja współczynników równania IPG-TIRE](image-url)
W przygotowywanym modelu współpracy koła z podłożem zastosowano zmienioną postać formuły. Dokonano następującego podstawienia:

\[t_n = \frac{L_n}{v_k} \]

(6.7)

wobec czego uzyskano nową postać formuły IPG-TIRE:

\[F_y(t) = F_y - \frac{L_n}{v_k} \tilde{\chi}_y(t) \]

(6.8)

gdzie: \(L_n \) – droga nabiegania,
\(v_k \) – prędkość środka koła względem podłoża.

Otrzymana postać równania IPG-Tire jest korzystniejsza, ponieważ zależy od prędkości środka koła \(v_k \). Natomiast interpretacja wprowadzonego parametru \(L_n \) jest analogiczna do czasu nabiegania \(t_n \). Jednak wartość drogi nabiegania \(L_n \) jest stała i jednocześnie charakterystyczna dla poszczególnych typów ogumienia i warunków ruchu koła. Przy znanych przebiegach charakterystyk odporności opon na znoszenie boczne, wykorzystanie formuły IPG-TIRE w modelu współpracy koła z podłożem wymaga pozyskania wartości drogi nabiegania \(L_n \). Konieczne jest jednak wyznaczenie jej wartości w szerokim zakresie zmian wartości kąta znoszenia oraz obciążenia normalnego koła.

Przykładowe wyniki badań eksperymentalnych dla opony 14.00 R20 z wkładką „run-flat”, przedstawiono na rysunku 6.15 w postaci charakterystyk sprężystości promieniowej uzyskanych przy kolejno zmniejszających się wartościach ciśnienia powietrza w kole. Pokazano również linię oraz wyrazy wielomianów aproksymujących przebiegi poszczególnych charakterystyk.

Jak widać, w szerokim zakresie zmian wartości ciśnienia powietrza i obciążenia normalnego koła, gdy wkładka „run-flat” nie bierze udziału w przenoszeniu obciążenia normalnego koła, charakterystykę sprężystości promieniowej opony można opisać, w zadowalającym sposób, za pomocą wielomianu czwartego stopnia.
Rys. 6. 15. Charakterystyki sprężystości promieniowej opony 14.00R20 z wkładką „run-flat” wyznaczone przy różnych wartościach ciśnienia powietrza w kole pₚ: a) pₚ = 500 kPa; b) pₚ = 333 kPa; c) pₚ = 166 kPa; d) pₚ = 0 kPa
6.2.5. Przebieg badań symulacyjnych

W trakcie badań symulacyjnych przyjęto następujący zakres zmiany poszczególnych parametrów:

a) zmiana położenia środka masy pojazdu:
 - wzdłuż osi Z: 200 mm (do góry) – 200 mm (do dołu),
 - wzdłuż osi X: 400 mm (do przodu) – 400 m (do tyłu),

b) zmiana masy pojazdu oraz wynikająca z tego zmiana wartości momentów bezwładności bryły kadłuba:
 - 18000 kg ($I_{x,kad} = 16786$ [kg m^2], $I_{y,kad} = 78320$ [kg m^2]),
 $I_{z,kad} = 80525$ [kg m^2],
 - 22000 kg ($I_{x,kad} = 20500$ [kg m^2], $I_{y,kad} = 95670$ [kg m^2]),
 $I_{z,kad} = 98365$ [kg m^2],
 - zwiększenie współczynnika sztywności zawieszenia o 30%,
 - zmniejszenie współczynnika sztywności zawieszenia o 30%.

Dla każdego z powyższych przypadków starano się wykonać poniższe próby:
- jazda ze stałą prędkością $v = 80$ km/h z narastającym kątem skrętu kierownicy wg charakterystyki podanej na rysunku 6.16 – zwana dalej w pracy „skrętem”,
- symulacja szarpnięcia kierownicy wg charakterystyki podanej na rysunku 6.17 – zwana dalej w tekście „szarpnięciem”,
- symulacja manewru podwójnej zmiany pasa ruchu z prędkością $v = 100$ km/h z funkcją obrotu kierownicy przedstawionej na rysunku 6.18 – zwana dla uproszczenia dalej w tekście „slalomem”.

![Rys. 6.16. Kąt skrętu kierownicy w funkcji czasu dla manewru łagodnego skręcania ze stałą prędkością](image)
6.2.6. Badania wpływu wybranych parametrów konstrukcyjnych na zachowanie pojazdu w ruchu krzywoliniowym

W wyniku przeprowadzonych badań symulacyjnych uzyskano zbiór danych dotyczących dynamiki badanego pojazdu zaprezentowanych na rysunkach 6.19÷6.36. W dalszej części pracy skupiono się głównie na określeniu wpływu zmienianych parametrów na stabilność jazdy podczas określonych powyżej manewrów, wyrażaną poprzez wartość siły promieniowej w ogumieniu, przyspieszenie poprzeczne zdefiniowane w środku masy pojazdu oraz położenie pojazdu na płaszczyźnie X-Y.
Ocena wpływu położenia środka masy oraz parametrów inercyjnych

Na rysunku 6.19 przedstawiono wartości sił pionowych działających na poszcze-
gólne koła pojazdu w wariantach przesunięcia środka masy pojazdu. Momenty, w któ-
rych wartość siły maleje do zera, oznaczają brak kontaktu opony z podłożem – czyli
„oderwanie się” koła od podłoża.

Rys. 6. 19. Wartość siły pionowej w czwartym lewym kole podczas skrętu ze stałą prędkością dla
różnych wariantów położenia środka ciężkości

Rys. 6. 20. Wartość siły pionowej w trzecim lewym kole podczas skrętu ze stałą prędkością dla
różnych wariantów położenia środka ciężkości
Rys. 6.21. Wartość przyspieszenia poprzecznego dla standardowego KTO oraz z różnymi położeniami środka ciężkości (CG) podczas skrętu ze stałą prędkością

Rys. 6.22. Wpływ zmiany położenia CG na tor ruchu pojazdu podczas manewru łagodnego skręcania ze stałą prędkością
Rys. 6.23. Wartość przyspieszenia poprzecznego podczas manewru slalomu dla różnego położenia środka ciężkości

Rys. 6.24. Wartość sił pionowych w poszczególnych kołach lewej strony pojazdu dla standardowego KTO podczas manewru skrętu ze stałą prędkością
Wpływ zmiany masy pojazdu

Rys. 6.25. Wartość sił pionowych w poszczególnych kołach lewej strony pojazdu dla KTO ze zmniejszoną masą podczas manewru skrętu ze stałą prędkością

Rys. 6.26. Wartość sił pionowych w poszczególnych kołach lewej strony pojazdu dla KTO ze zwiększoną masą podczas manewru skrętu ze stałą prędkością
Rys. 6.27. Wpływ zmiany masy pojazdu na jego tor ruchu pojazdu podczas manewru łagodnego skrętu ze stałą prędkością

Rys. 6.28. Wpływ zmiany masy pojazdu na wartość przyspieszenia poprzecznego podczas manewru skrętu ze stałą prędkością
Rys. 6.29. Wpływ zmiany masy pojazdu na wartość przyspieszenia poprzecznego podczas manewru „slalomu”

Na podstawie wyników przeprowadzonych badań symulacyjnych można m.in. stwierdzić, że:

- przemieszczenie środka ciężkości pojazdu wzdłuż osi Z o 200 mm spowodowało pogorszenie parametrów dynamicznych pojazdu poprzez utratę jego stabilności podczas manewru skrętu już w 20. sekundzie symulacji (wszystkie koła utraciły kontakt z podłożem),
- najkorzystniejszym wariantem położenia środka ciężkości było przemieszczenie go w dół o 200 mm (podczas manewru skrętu koła 3 i 4 lewej strony utraciły kontakt, ale pojazd nie przewrócił się),
- przemieszczanie środka ciężkości pojazdu wzdłuż osi podłużnej wpłynęło na zmianę promienia skrętu pojazdu: przemieszczenie do przodu – zwiększyło promień skrętu, przemieszczenie do tyłu – zmniejszyło go (rys. 6.22),
- zmiana położenia środka ciężkości pojazdu nie miała praktycznie żadnego wpływu na wartość przyspieszenia poprzecznego podczas manewru podwójnej zmiany pasa ruchu (rys. 6.23),
- wzrost masy pojazdu oraz wynikająca z tego zmiana charakterystyk bezwładności spowodowała wcześniejszą utratę stabilności podczas manewru skrętu – zmniejszenie masy spowodowało tendencję odwrotną (rys. 6.28). Zmiana masy nie wpłynęła praktycznie na wartość przyspieszeń poprzecznych podczas manewru podwójnej zmiany pasa ruchu (rys. 6.29).
Wpływ zmiany współczynnika sztywności zawieszenia

Rys. 6. 30. Wpływ zmiany współczynnika sztywności zawieszenia na tor ruchu pojazdu

Rys. 6. 31. Wpływ zmiany współczynnika sztywności zawieszenia na wartość przyspieszenia bocznego podczas manewru skrętu ze stałą prędkością
Rys. 6. 32. Wartość obciążeń pionowych trzeciego koła jezdнего lewej strony dla różnych wartości współczynnika sztywności podczas skrętu ze stałą prędkością.

Rys. 6.33. Wartość obciążeń pionowych czwartego koła jezdnego lewej strony dla różnych wartości współczynnika sztywności podczas skrętu ze stałą prędkością.

Dodatkowo, z uwagi na fakt, iż z analizy animacji komputerowej wynikało, że pojazd ze zmniejszonym współczynnikiem sztywności nie utracił stabilności (jak to miało miejsce dla standardowej oraz zwiększonej sztywności) dokonano prezentacji sił pionowych we wszystkich kołach lewej (odciążanej podczas manewru skrętu) strony pojazdu.
Na podstawie danych zamieszczonych na rysunku 6.34 można stwierdzić, że lewe koła 3 i 4 utraciły kontakt z podłożem (odpowiednio w 38 sekundzie i 21 sekundzie symulacji), natomiast lewe 1 i 2 były cały czas w kontakcie z podłożem.

Rys. 6. 34. Wartość obciążenia pionowego wszystkich kół lewej strony dla KTO ze zmniejszonym współczynnikiem sztywności podczas skrętu ze stałą prędkością

Z danych zamieszczonych na rysunku 6.31 wynika, że zmniejszenie współczynnika sztywności zawieszenia zdecydowanie poprawiło możliwość wykonania manewru skrętu ze stałą prędkością. Pojazd, pomimo utraty kontaktu kół 3 i 4 z podłożem, poruszał się po okręgu ze stałą wartością przyspieszenia poprzecznego. Pojazd ze standardowym oraz ze zwiększonym współczynnikiem sztywności utracił stabilność odpowiednio w 67 i 59 sekundzie symulacji.

Wpływ zmiany prędkości pojazdu

Podczas badań symulacyjnych przyjęto również wariant wykonywania manewru podwójnej zmiany pasa ruchu przez pojazd poruszający się z prędkością 100, 120 oraz 140 km/h. Wartość przyspieszenia poprzecznego środka ciężkości pojazdu przedstawiono na rysunkach 6.35 i 6.36.

Podczas symulowania wykonywania manewru podwójnej zmiany pasa ruchu z prędkościami 100, 120 oraz 140 km/h stwierdzono, że pojazd zachowuje się stabilnie. Wartości obciążone pionowych kół jezdnych wskazują, że żadne z nich nie utraciło kontaktu z podłożem. Biorąc pod uwagę prędkość maksymalną pojazdu (~110 km/h) można stwierdzić, że ma on możliwość zwiększenia prędkości maksymalnej, przy której wykonywanie manewrów jest bezpieczne.
Rys. 6.35. Wartość przyspieszenia poprzecznego podczas manewru podwójnej zmiany pasa ruchu z prędkością przejazdu 100, 120 i 140 km/h

Rys. 6.36. Wartość obciążeń pionowych 4 kół podczas manewru podwójnej zmiany pasa ruchu przy różnych prędkościach przejazdu
6.3. Podsumowanie rozdziału

Wyniki badań symulacyjnych dla przyjętych wymuszeń wykazały pewien wpływ zmian poszczególnych parametrów na bezpieczeństwo ruchu pojazdu, lecz nie są one bardzo spektakularne. Wyniki wskazują raczej na to, że badana konstrukcja pojazdu jest na tyle dopracowana, iż określony zakres zmian wybranych charakterystyk (mający zaistnieć podczas normalnej eksploatacji), np. zmiana obciążenia i wynikająca z tego zmiana położenia środka ciężkości lub regulacja sztywności zawieszenia hydropneumatycznego, jest w pełni dopuszczalny bez pogorszenia parametrów trakcyjnych oraz warunków bezpieczeństwa.

Przedstawione w rozdziale 6 badania eksperymentalne oraz symulacyjne wykazały możliwość dokonania oceny wpływu zmian konstrukcyjnych na bezpieczeństwo ruchu, zgodnie z metodyką prezentowaną w rozdziale 4, w przypadku czteroosiowych pojazdów opancerzonych. Realizacja etapu badań symulacyjnych, za pomocą modelu opracowanego z wykorzystaniem oprogramowania do dynamiki układów wielomasywnych (MBS), potwierdziła swoją przydatność adekwatnie jak w przypadku realizacji w oparciu o programy własne (rozdz. 5).

Na potrzeby etapu polegającego na zebraniu danych do modelu uzyskano wyniki badań dla opisu parametrów koła ogumionego z wkładką run flat nie występujące do tych czasów w literaturze.
7. MODEL ZAWIESZENIA HYDROPNEUMATYCZNEGO

Przedstawiana wcześniej metodyka polegająca na wykorzystaniu opracowanego, zweryfikowanego modelu oraz wykonaniu za jego pomocą badań symulacyjnych, umożliwia w szerszym zakresie ocenę wpływu wprowadzonych zmian konstrukcyjnych niż prowadzenie wyłącznie badań eksperymentalnych kierowności i stateczności. Badania opisywane w rozdziale 6 nie uwzględniały, w sposób szczegółowy, zastosowania zawieszenia hydropneumatycznego. Jest to bardzo aktualna tendencja rozwojowa w konstrukcji zawieszeń pojazdów opancerzonych, zwłaszcza czteroosiowych średnich i ciężkich, należy więc uwzględnić w badaniach modeli tego typu zawieszenia.

7.1. Właściwości zawieszenia hydropneumatycznego

Zawieszenia hydropneumatyczne w pojazdach wojskowych mają następujące zalety:
- progresywną charakterystykę sprężystości zapewniającą duży komfort jazdy z małym obciążeniem, a także możliwość znacznego obciążenia pojazdu ładunkiem (w klasycznym zawieszeniu te wymagania się wykluczają).
- możliwość obniżenia wysokości pojazdu poprzez zmianę prześwitu, co zapewnia np. większą podatność na transport lotniczy,
- możliwość zwiększenia prześwitu, co powoduje większą zdolność pokonywania terenu,
- istnieje możliwość zapewnienia samopoziomowania (ang. self-leveling) zawieszenia,
- zwartą zabudowę,
- obsługa zawieszenia jest względnie prosta (ale wymagają przerzuczenia załóg obsługowych),
- stosunkowo niski koszt przy produkcji masowej,
- w wielu przypadkach niższą masę nieresorowanej pojazdu,
- właściwości zawieszenia decydują o lepszej odporności pojazdu na wywrócenie podczas ruchu krzywoliniowego (wielką odporność na wywrócenie), jest to szczególnie ważne w przypadku ciężkich pojazdów,
- możliwość poziomego usytuowania kolumny hydropneumatycznej w zawieszeniu tylnym pojazdu (oszczędność miejsca, które może być przeznaczone na zabudowę innego wyposażenia specjalnego, bądź może powiększyć przestrzeń ładunkową czy desantową).

Wady zawieszenia hydropneumatycznego:
- wymaga specjalistycznego zaplecza obsługowo-naprawczego oraz przeszkolonego personelu,
- naprawa zawieszenia hydropneumatycznego jest kosztowna, zwłaszcza gdy zachodzi konieczność wymiany części jego elementów na skutek zaniedbania eksploatacyjnych,
- uszkodzenie układu hydraulicznego może uniemożliwić jazdę bądź znacznie ograniczyć (zmniejszyć) prześwit pojazdu.

Na rysunku 7.1 przedstawiono schemat układu zawieszenia hydropneumatycznego z wyszczególnieniem istotnych elementów odpowiedzialnych za przenoszenie dynamicznych obciążeń pionowych z kół osi jezdnych, poprzez kolumnę hydrauliczną, na nadwozie czteroosiowego średniego pojazdu opancerzonego.
Zawory sterowania wysokością zawieszenia są zasilane z akumulatora ciśnienia (składającego się z kuli gazowej wypełnionej azotem i oddzielonej od membrany cieczą roboczą). Fazy działania zaworu sterowania wysokością są następujące:

A – położenie normalne (brak przepływu/odpływ cieczy do/z kolumny),

B – położenie nadwozia „obniżone”, tzn. wysokość nadwozia mniejsza niż zamierzona (na skutek wzrostu np. obciążenia, a nie regulacji dźwignią przez kierowcę) – przepływ cieczy do kolumny,

Zawór sterowania wysokością nie był obiektem modelowania. Z uwagi na przyjęte założenia, m.in. brak wycieków płynu z kolumny hydraulicznej, a także brak funkcji samopoziomowania nadwozia pojazdu względem podłoża, zdecydowano zamodelować obiekt kolumny zawieszenia hydropneumatycznego ze stałą objętością płynu hydraulicznego. Jednak przed przygotowaniem równań modelu kolumny zawieszenia hydropneumatycznego zdecydowano przeanalizować działanie całego układu, w tym układów pełniących rolę pomocniczą. Takie podejście umożliwi w przyszłości stosunkową łatwą rozbudowę czy modernizację istniejącego modelu.

Najważniejszy element zawieszenia hydropneumatycznego stanowi kolumna zawieszenia (rys. 7.2).

Podczas modelowania zwrócono uwagę na te elementy, które decydują o wartościach sprężystych i tłumiących sił dynamicznych przenoszonych w kierunku pionowym z kół osi jezdnych na nadwozie pojazdu.
Pneumatyczny element sprężysty składa się ze zbiornika, w którym elastyczna membrana oddziela część hydrauliczną od pneumatycznej (rys. 7.3).

Element tłumiący drgania jest zabudowany wewnątrz kolumny hydropneumatycznej pomiędzy przestrzenią hydrauliczną cylindra a przestrzenią hydrauliczną w pneumatycznym elemencie sprężystym. Tłumienie jest uzyskiwane dzięki przepływowi lamiarnemu przez kalibrowane zawory tłumiące i zawór środkowy. Przepływ przez zawór środkowy odbywa się z prędkością nieprzekraczającą 20 cm/s. W tym przypadku zawory tłumiące nie pracują, a przepływ przez zawór środkowy powoduje tylko niewielki opór dla cieczy. Element tłumiący jest typu podwójnego działania.

Zadaniem pompy hydraulicznej jest wytworzenie ciśnienia płynu hydraulicznego zasilającego elementy wykonawcze zawieszenia hydropneumatycznego. Z uwagi na przyjęte w dalszej części pracy założenia, pompa hydrauliczna nie była przedmiotem modelowania.

Zadaniem regulatora jest utrzymanie ciśnienia płynu zasilającego w określonym przedziale ciśnienia roboczego. Regulator steruje działaniem pompy hydraulicznej. Ze względu na przyjęte założenia regulator ciśnienia nie był przedmiotem modelowania.

7.2. Model fizyczny

Dla modelu pojazdu zaproponowano zawieszenie hydropneumatyczne bazujące na komponentach stosowanych we współczesnych samochodach ciężarowych i osobowych. Na rysunkach 7.4 i 7.5 przedstawiono schemat układu zawieszenia hydropneumatycznego z wyszczególnieniem istotnych elementów odpowiedzialnych za przeniesienie dynamicznych obciążzeń pionowych z kół osi jezdnych, poprzez kolumnę hydrauliczną, na nadwozie pojazdu.

do głównych podzespołów układu wykonawczego odpowiedzialnego za realizację podstawowych funkcji zawieszenia zaliczono:
a) kolumnę hydropneumatyczną,
b) cylinder hydrauliczny,
c) pneumatyczny element sprężysty,
d) element tłumiący,
e) zbiornik płynu,
f) pompę zasilającą,
g) regulator wysokości nadwozia,
h) zawór sterowania wysokością nadwozia,
i) przewody hydrauliczne (wysokiego i niskiego ciśnienia).

Rys. 7.4. Schemat układu zawieszenia hydropneumatycznego na tle pojazdu: 1 – obudowa, 2 – tłoczek sterujący

Rys. 7.5. Schemat układu zawieszenia hydropneumatycznego

Przed rozpoczęciem opracowywania modelu przyjęto kilka założeń. Zdecydowano się rozważyć wyłącznie procesy zachodzące podczas pracy zawieszenia w kierunku pionowym.
Elementy prowadzące koło (tzn. wahacze) zamodelowano jako nieodkształcalne, bezmasowe i połączone wiązami z nadwoziem i kolumną hydropneumatyczną.

Wymuszeniem działającym na układ zawieszenia pojazdu jest przebieg wysokości nierówności podłużnych drogi bądź inne zewnętrzne (np. podmuch wiatru) lub wewnętrzne, pochodzące np. od siły reakcji nadwozia na wystrzał pocisku z armaty itp. Na rysunkach 7.6 oraz 7.7 przestawiono strukturę zbudowanego modelu.

Odpowiedzią modelu są przebiegi czasowe wartości wybranych wielkości fizycznych charakteryzujących ruch modelu pojazdu (w tym pracę elementów zawieszenia).

Rys. 7.6. Model symulacyjny – struktura bloków głównych: uP – przemieszczenie pedału hamulca, q1234 – profil podłużny drogi pod kołami osi 1, 2, 3, 4

Rys. 7.7. Struktura modelu pojazdu i układu hamulcowego
Istotne elementy podlegające zamodelowaniu, a mające wpływ na właściwości zawieszenia hydropneumatycznego to:

- siłownik (ang. actuator) składający się z tłoka związanego z osią jezdnią (o masie \(m \)) oraz cylinder hydrauliczny związany z nadwoziem (o masie \(M \)),
- element tłumiący (ang. damper orifice),
- element sprężysty składający się ze zbiornika, w którym gaz roboczy - azot (nitra-gen) został oddzielony od cieczy roboczej (oleju mineralnego) elastyczną membraną; dzięki swojej elastyczności membrana może wyrównywać ciśnienie pomiędzy dwiema komorami.

W modelu uwzględniono:

- właściwości sprężyste zawieszenia hydropneumatycznego,
- właściwości tłumiące zawieszenia hydropneumatycznego,
- możliwość dalszej jego rozbudowy w kierunku współprac kolumny hydropneumatycznej z zaworem (ang. high control valve) sterującym wysokością położenia nadwozia pojazdu oraz algorytmem sterownika zawieszenia (możliwość pracy w trybie półautomatycznym).

Podczas budowy modelu przyjęto następujące założenia:

- akumulator ciśnienia zamodelowany jako źródło nieskończonej energii płynu hydraulicznego pod stałym ciśnieniem \(p_{ZASIL} \),
- nie uwzględniano tarcia wywołanego ruchem tłoka w cylindrze hydraulicznym,
- nie uwzględniano mas: tłoka, tłoczyska oraz membrany,
- nie uwzględniano dynamiki pracy zaworów decydujących o właściwościach tłumiących (pominięto ich bezwładność podczas ich zamykania i otwierania),
- przewody hydrauliczne zastąpiono odpowiednimi oporami hydraulicznymi,
- współczynniki przepustowości przewodów hydraulicznych przyjęto jako stałe,
- pominięto wymianę ciepła z otoczeniem zakładając stałą temperaturę płynu hydraulicznego.

W modelu pominięto:

- zjawisko odpływu cieczy roboczej z kolumny zawieszenia na skutek przeciaków pomiędzy tłokiem a cylindrem kolumny zakładając, że połączenie jest idealnie szczelne,
- zjawisko ubytku gazu roboczego na skutek jego przenikania do cieczy roboczej bądź ubytku przez nieśćczołość w króciu zapewniającym napełnianie gazu do kulistego elementu sprężystego.

Model kolumny zawieszenia hydropneumatycznego

Przy formułowaniu równań matematycznych [23, 53] modelu kolumny zawieszenia hydropneumatycznego, której schemat obliczeniowy przedstawiono na rysunku 7.8 przyjęto następujące założenia i uproszczenia:

- lepkość, gęstość i temperatura cieczy nie ulegają zmianom podczas trwania procesu przejściowego,
- siły lepkościowej tarcia tłoka w cylindrze są pomijane z uwagi na ich małą wartość,
- ciecz jest nieścieśliwa, a elementy przenoszące ciśnienie cieczy roboczej są sztywne i nie odkształcają się pod wpływem ruchu lub zmiany tego ciśnienia,
- strumień cieczy jest ciągły.
7.3. Model matematyczny

Opis matematyczny modelu polega na ułożeniu równań matematycznych opisujących:
- działanie elementów ruchomych,
- straty ciśnienia przepływu cieczy w elementach hydraulicznych,
- bilans chwilowych masowych strumieni cieczy (równania węzłów lub równania obwodów).

Wyznaczanie warunków początkowych

W pneumatycznym elemencie sprężystym w warunkach obciążenia statycznego zachodzi równość:

\[p_{NI} = \frac{Z_i}{S_{MB}} \]

(7.1)

Zatem można zapisać:

\[p_{N1} = M_N \frac{Q}{L} \frac{1}{S_{NB}} \]

(7.2)
oraz korzystając z równania przemiany adiabatycznej:

\[V_{N1} = V_{01} \sqrt{\frac{p_{01}}{p_{N1}}} \]

(7.3)

i analogicznie:

\[p_{N2} = M_N \frac{\dot{Q}}{L} \frac{1}{S_{MB}} \]

(7.4)

\[V_{N2} = V_{02} \sqrt{\frac{p_{02}}{p_{N2}}} \]

(7.5)

gdzie:

\[S_{MB} = \frac{\rho \dot{Q}_{MB}^2}{4} \]

(7.6)

Równania bilansu ciśnienia cieczy w układzie hydraulicznym

Schemat działania sił reakcji zawieszenia hydropneumatycznego na nadwozie pojazdu przedstawiono na rysunku 7.9.

\[\text{Rys. 7.9. Schemat działania siły reakcji kolumny zawieszenia hydropneumatycznego na nadwozie pojazdu} \]

Ogólne równanie bilansu ciśnienia cieczy przedstawia się następująco:

\[p_{H5} = p_{H4} - p_{HM4-5} \]

(7.7)

– przy sprężaniu

\[p_{H5} = p_{H4} + p_{HM4-5} \]

(7.8)

– przy rozprężaniu

\[p_{H5} = p_{H4} \cdot p_{HM4-5} \]

(7.9)
gdzie:

\[P_{H4} = \frac{F_{HP}}{S_{CL}} \]
(7.10)

\[S_{CL} = \frac{p \bar{d}C_{CL}^2}{4} \]
(7.11)

Korzystając z zasady równowagi ciśnienia (cieczy pod membraną i azotu nad membraną) w stanie ustalonym można zapisać:

\[p_{HS} = p_{H4} = p_{N5}\left(t\right) = p_{N1} \frac{g}{C'_{N1} - D'V\left(t\right)} \]
(7.12)

\[D'V\left(t\right) = S_{CL} \bar{A}_{H4i} \]
(7.13)

\[x_{H4i} = -z + f \bar{A}_i + z_i \]
(7.14)

\[x_{H42} = -z + f \bar{A} + z_2 \]
(7.15)

\[P_{HM4-5} = x_{H4-5} \frac{\frac{dy_{H4-5}}{dt} \bar{A}_{C, E}}{\bar{C} \bar{S}_{C, E} \bar{S}_{CL}} \]
(7.16)

\[\frac{dy_{H4-5}}{dt} \bar{A}_{C, E} = \frac{dx_{H4i}}{dt} \bar{C}_{CL} \]
(7.17)

\[\frac{dy_{H4-5}}{dt} = \frac{dx_{H4i}}{dt} \bar{S}_{CL} \bar{S}_{C, E} \]
(7.18)

\[P_{HM4-5} = x_{H4-5} \frac{\frac{dy_{H4-5}}{dt} \bar{A}_{C, E}}{\bar{C} \bar{S}_{C, E} \bar{S}_{CL}} \]
(7.19)

– dla sprężania

\[P_{HM4-5} = x_{H4-5} \frac{\frac{dy_{H4-5}}{dt} \bar{A}_{C, E}}{\bar{C} \bar{S}_{C, E} \bar{S}_{CL}} \]
(7.20)

– dla rozprężania

\[P_{HM4-5} = x_{H4-5} \frac{\frac{dy_{H4-5}}{dt} \bar{A}_{C, E}}{\bar{C} \bar{S}_{C, E} \bar{S}_{CL}} \]
(7.21)

gdzie:

\[S_{C} = \frac{p \left(\bar{d}C_{E}^2 + \bar{d}_{CE}^2 \right)}{4} \]
(7.22)
\[S_E = \rho \left(\frac{d_E^2 + d_{CE}^2}{4} \right) \] (7.23)

i podstawiając za:

\[p_{H4i} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H4i}}{c_{H4i}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H4i}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.24)

a po podstawieniu:

\[p_{H4i} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H4i}}{c_{H4i}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H4i}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.25)

W szczególności dla przedniego zawieszenia:
– ruch tła do góry (faza ściskania):

\[p_{H41} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H41}}{c_{H41}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H41}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.26)

\[p_{H51} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H51}}{c_{H51}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H51}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.27)

– ruch tła do dołu (faza rozciągania):

\[p_{H41} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H41}}{c_{H41}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H41}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.28)

\[p_{H51} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H51}}{c_{H51}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H51}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.29)

Dla tylnego zawieszenia:
– ruch tła do góry (faza ściskania):

\[p_{H42} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H42}}{c_{H42}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H42}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.30)

\[p_{H52} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H52}}{c_{H52}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H52}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.31)

– ruch tła do dołu (faza rozciągania):

\[p_{H42} = p_{Ni} \cdot \frac{V_{Ni}}{c_{Ni} - \frac{S_{H42}}{c_{H42}}} \cdot x_{i-5} \cdot \frac{\frac{\partial X_{H42}}{\partial t}}{c} \cdot \frac{\frac{\partial S_{CL}}{\partial t}}{S_{CL} - S_{C-E}} \] (7.32)
\[p_{H2} = p_{N2} \frac{V_{N2}}{\frac{\dot{V}}{\dot{d}} - \frac{\dot{V}}{\dot{d}} + x_{i-5} \frac{\dot{d}_{H42}}{2 \frac{\dot{d}_{H42}}{\frac{\dot{d}_{H42}}{S_{E}}} + \frac{\dot{d}_{H42}}{S_{E}}} + \frac{\dot{d}_{H42}}{S_{E}}} (7.33) \]

Siła oddziałująca na nadwozie pojazdu wynosi zatem:
\[F_{HP1} = p_{H41} \frac{\dot{V}}{\dot{d}} \]
\[F_{HP2} = p_{H42} \frac{\dot{V}}{\dot{d}} \]

Równanie funkcjonowania zaworu sterowania wysokością prześwitu

Równanie kinematyki ruchu tłoczyska \(x_{Ti} \):
\[l_{g} (a_{g}) = \frac{l_{R4} - z_{l}}{l_{R3}} \]
(7.36)

gdzie w szczególnym przypadku, podstawiając \(z_{l} = 0 \), otrzymano wyrażenie na wartość kąta statycznego:
\[l_{g} (a_{STAT}) = \frac{l_{R4}}{l_{R3}} \]
(7.37)

Dodatkowo można zapisać:
\[l_{g} (a_{STAT}) = \frac{e_{R1}}{e_{R2}} \]
(7.38)

zatem:
\[x_{Ti} = e_{R2} \frac{\dot{a}_{g} (a_{STAT}) - l_{g} (a_{g})}{l_{R3}} \]
(7.39)

Po podstawieniu:
\[x_{Ti} = e_{R2} \frac{\dot{a}_{g} (a_{STAT}) - l_{g} (a_{g})}{l_{R3}} \]
(7.40)

czynności prowadzi do:
\[x_{Ti} = \frac{z_{l}}{l_{R3}} \frac{\dot{a}_{R2}}{l_{R3}} \]
(7.41)

Pole powierzchni przekroju zaworów:
\[S_{23} = \frac{\rho \dot{d}_{23} [x_{Ti} - c_{1}]^{2}}{4} \text{ dla } x_{Ti} \in \{0, d_{23}\} \]
(7.42)
\[S_{23} = 0 \text{ dla } x_{Ti} > d_{23} \]
(7.43)
\[S_{03} = 0 \text{ dla } x_{Ti} \leq c_{1} - d_{03} \]
(7.44)
\[S_{03} = \frac{\rho \dot{d}_{03} [x_{Ti} - c_{1} + d_{03}]^{2}}{4} \text{ dla } x_{Ti} \in \{c_{1} + d_{03}, c_{1}\} \]
(7.45)
\[S_{03} = 0 \text{ dla } x_{Ti} > d_{03} \]
(7.46)
Dobór parametrów sztywności sprężyny gazowej

Rolę elementu sprężystego w zawieszeniu hydropneumatycznym pełni sprężyna gazowa (pneumatyczny element sprężysty). Obliczenia tej sprężyny polegają na wyznaczeniu jej współczynnika sztywności:

\[k = \frac{dF_{HP}}{dx_{4i}} \] (7.47)

gdzie:

\[F_{HP} = \rho_{HAi} \bar{C}_{CL} - \text{siła działająca na nadwozie} \] (7.48)

\[x_{4i} = \frac{V}{S_{CL}} - \text{przemieszczenie tłoczyka} \] (7.49)

Zatem

\[dF_{HP} = \rho_{HAi} \bar{C}_{CL} \] (7.50)

\[dx_{4i} = \frac{dV}{S_{CL}} \] (7.51)

\[k = \frac{dF_{HP}}{dx_{4i}} = \rho_{HAi} \bar{C}_{CL} \frac{dV}{S_{CL}} \] (7.52)

Zmiana objętości w komorze gazowej wynosi:

\[V_i = V_0 - V \] (7.53)

Zalożono, że w trakcie pracy sprężyny gazowej zachodzi przemiana adiabatyczna, w której zmieniają się wszystkie parametry stanu gazu, m.in. ciśnienie, objętość właściwa, temperatura, energia wewnętrzna, entalpia, entropia i inne. Ponieważ nie ma wymiany ciepła z otoczeniem podczas sprężania, rośnie temperatura gazu, a podczas rozprężania temperatura maleje. Ponadto, podobnie jak w przypadku sprężania izotermicznego, maleje objętość, a rośnie ciśnienie.

Przebieg przemiany adiabatycznej określa się prawem Poissona:

\[p_1 \bar{V}^k_1 = p_0 \bar{V}^k_0 \] (7.54)

gdzie:

- \(p \) – ciśnienie gazu,
- \(V \) – objętość zajmowana przez gaz,

po przekształceniu (7.54):

\[p_1 = p_0 \frac{V_0^k}{V_1^k} \] (7.55)
i po podstawieniu (7.53):

\[p_1 = p_0 \frac{V_0^k}{(V_0 - V)^k} \]

(7.56)

\[p_1 = \frac{p_0}{(V_0 - V)^k} = \frac{p_0}{\frac{\hat{a} V}{\hat{b} V_0 + \hat{c}}} \]

(7.57)

Po zróżniczowaniu \(p_1 \) względem \(V \) otrzymano

\[\frac{dp_1}{dV} = k \frac{\bar{Q}_0}{V_0} \frac{1}{\frac{\hat{a} V}{\hat{b} V_0 + \hat{c}}} \]

(7.58)

a po podstawieniu do (7.52) otrzymano końcową postać wyrażenia:

\[k = \frac{S_{\text{CL}}^2 \bar{Q} \bar{Q}_0}{V_0} \frac{1}{\frac{\hat{a} V}{\hat{b} V_0 + \hat{c}}} \]

(7.59)

oraz podstawiając za \(V \) wyrażenie (7.49) otrzymano:

\[k = \frac{S_{\text{CL}}^2 \bar{Q} \bar{Q}_0}{V_0} \frac{1}{\frac{\hat{a} V}{\hat{b} V_0 + \hat{c}}} \]

(7.60)

Przykładową charakterystykę siły sprężystości pneumatycznego elementu sprężystego na tle charakterystyki sprężystości resoru piórowego przedstawiono na rysunku 7.10.

Wartość liczbową współczynnika oporu hydraulicznego dla przypadku naglego zmniejszenia przekroju przepływowego określono na podstawie tabeli zależności współczynnika od stosunku średnic \(d_1/d_2 \) zamieszczonej w [82].

Wykładnik adiabaty k równy stosunkowi ciepła właściwego przy stałej objętości i przy stałym ciśnieniu. Współczynniki \(a \) zależą od liczby stopni swobody cząsteczek gazu i przyjmują wartości: 3/2 – dla gazów jednoatomowych, 5/2 – dla gazów dwuatomowych i 3 dla gazów wieloatomowych. Azot jest gazem dwuatomowym, dlatego współczynnik \(a = 5/2 \), a \(\kappa = 1.4 \).
Rys. 7.10. Przebieg wartości siły sprężystości pojedynczego elementu hydropneumatycznego (na jedno koło) w funkcji przemieszczenia tłoczyska w cylindrze hydraulicznym (lub ugięcia zawieszenia). Linią niebieską oznaczono wartość ugięcia i siłę statycznego obciążenia zawieszenia.

Dobór parametrów tłumiących kolumny hydropneumatycznej

Względny współczynnik tłumienia określa się jako iloraz współczynnika tłumienia i krytycznego współczynnika tłumienia:

\[
\delta_{TL} = \frac{c}{c_{KR}} \tag{7.61}
\]

Wartość tego współczynnika dla typowych zawieszeń pojazdów mechanicznych wynosi od 0,2 do 0,3. Do obliczeń w modelu przyjęto wartość \(\delta_{TL} = 0,25 \).

Zatem na podstawie zależności (7.61) można zapisać, że:

\[
c = \delta_{TL} c_{KR} \tag{7.62}
\]

Zależność opisującą wartość tłumienia krytycznego przedstawiono poniżej:

\[
c_{KR} = 2 \frac{\dot{Q}}{k \bar{h}} \tag{7.63}
\]

Po podstawieniu (7.63) do (7.62) otrzymano:

\[
c = \delta_{TL} 2 \frac{\dot{Q}}{k \bar{h}} \tag{7.64}
\]

Do obliczeń współczynnika tłumienia przyjęto wartość współczynnika sztywności zawieszenia w punkcie odpowiadającym ugięciu statycznemu oraz wartość masy przypadającą na jedną kolumnę zawieszenia. Po podstawieniach wartość współczynnika tłumienia przedstawia równanie (7.65):
W celu doboru parametrów \((d_C, d_E)\) decydujących o współczynniku tłumu kolumny hydropneumatycznej zbudowano jej dodatkowy model (rys. 7.11), obejmujący elementy: masowy, sprężysty i tłumiący (o zmiennym współczynniku tłumu). Pośużył on do wyznaczenia przebiegów przemieszczenia masy nadwozia wywołanych wymuszeniem skokowym. Jako wymuszenie skokowe przyjęto wymuszenie kinematyczne polegające na upuszczeniu pojazdu z wysokości 7 cm na płaskie podłoże. W celu wyeliminowania drgań kątowych nadwozia zmieniono parametry rozkładu masy pojazdu tak, aby jego środek masy znajdował się w środku symetrii pojazdu. Przebiegi przemieszczenia środka masy nadwozia wywołane takim wymuszeniem i dla różnych wartości parametrów modelu decydujących o efektywności tłumu przedstawiono na rysunku 7.12.

![Diagram](image)

Rys. 7.11. Model symulacyjny do wzorcowania współczynnika tłumu kolumny hydropneumatycznej
Rys. 7.12. Przebieg przemieszczeń masy nadwozia dla różnych wartości parametrów \((d_c, d_e)\) decydujących o wartości tłumienia kolumny hydropneumatycznej

Przebiegi te zostały wykorzystane od wzorcowania (doboru) wielkości fizycznych odpowiadających za tłumienie w kolumnie hydropneumatycznej. Do nich zaliczamy:

- \(d_c\) – średnicę zaworu tłumiącego „compression”.
- \(d_e\) – średnicę zaworu tłumiącego „rebound”.

Do dalszych badań symulacyjnych przyjęto \(d_c = 0,005\) m i \(d_e = 0,0025\) m. Takie wartości średnic zaworów elementu tłumiącego zapewniają przebiegi przedstawione na rysunku 7.13, a te są z kolei zbliżone (co do jakości) do przebiegu uzyskanego na wzorcowym modelu kolumny hydropneumatycznej zadanym współczynnikiem tłumienia o wartości jak podano w równaniu (7.65). Porównanie przebiegów przemieszczeń wskazuje, że zbudowany model dobrze odzwierciedla własności tłumiące obiektu rzeczywistego.
Model matematyczny pojazdu czterosiodłowego średniego pojazdu opancerzonego
z uwzględnieniem modelu zawieszenia hydropneumatycznego

Równania ruchu modelu pojazdu zapisano w trzech prostokątnych, prawoskrętnych układach współrzędnych Oxyz, O₁x₁y₁z₁, O₂x₂y₂z₂. Poniżej przedstawiono podstawowe równania decydujące o wartościach dynamicznych sił pionowych działających na nadwozie pojazdu.

Równanie ruchu pionowego nadwozia (w układzie Oxyz):
– zawieszenie mechaniczne:
\[\ddot{z} = \frac{1}{m} \left(\ddot{Q}F_{z1} + F_{z2} + F_{z3} + F_{z4} - m \ddot{Q}z \right) \]
(7.66)
\[m \ddot{Q} + k_{x1} \ddot{Q}z - f(\ddot{Q} - \ddot{z}_1) + k_{x2} \ddot{Q}z + f(\ddot{Q} - \ddot{z}_2) + c_{x1}(\dddot{Q}z - f(\dddot{Q} - \dddot{z}_1)) + c_{x2}(\dddot{Q}z + f(\dddot{Q} - \dddot{z}_2)) = 0 \]
(7.67)
– zawieszenie hydropneumatyczne:
\[m \ddot{Q} + F_{HP1} + F_{HP2} = 0 \]
(7.68)
gdzie:
\[F_{HP1} = f \left(z, \dot{z}, \ddot{z}, \dot{z}_1, \ddot{z}_1 \right) \]
(7.69)
\[F_{HP2} = f \left(z, \dot{z}, \ddot{z}, \dot{z}_2, \ddot{z}_2 \right) \]
(7.70)

Równanie ruchu pionowego wózka przedniej osi (w układzie O₁x₁y₁z₁):
– zawieszenie mechaniczne:

\[m_1 \ddot{q}_1 - k_{r1}(\dot{q}_z - \dot{q}_1) - c_{d1}(\dot{q}_z - \dot{q}_1) + k_{x1} \dot{q}_1 + c_{x1} q_1 = 0 \]

(7.71)

– zawieszenie hydropneumatyczne:

\[m_1 \ddot{q}_1 - F_{HP1} + k_{x1} \dot{q}_1 + c_{x1} q_1 = 0 \]

(7.72)

Równanie ruchu pionowego wózka tylnej osi (w układzie O_2x_2y_2z_2):
– zawieszenie mechaniczne:

\[m_2 \ddot{q}_2 - k_{r2}(\dot{q}_z - \dot{q}_2) - c_{d2}(\dot{q}_z - \dot{q}_2) + k_{x2} \dot{q}_2 + c_{x2} q_2 = 0 \]

(7.73)

– zawieszenie hydropneumatyczne:

\[m_2 \ddot{q}_2 - F_{HP2} + k_{x2} \dot{q}_2 + c_{x2} q_2 = 0 \]

(7.74)

Równanie ruchu obrotowego nadwozia (w układzie Oxyz względem osi y):
– zawieszenie mechaniczne:

\[I_y \ddot{\phi} + k_{r1}(\dot{\phi} - \dot{q}_z) - k_{r2}(\dot{\phi} + \dot{q}_z) + c_{d1}(\dot{\phi} - \dot{q}_z) + M_{H1} + M_{H2} + X_1 \dot{q}_{w1} + X_2 \dot{q}_{w2} = 0 \]

(7.75)

2. zawieszenie hydropneumatyczne:

\[I_y \ddot{\phi} + F_{HP1} \dot{\phi} - F_{HP2} \dot{\phi} + M_{H1} + M_{H2} + X_1 \dot{q}_{w1} + X_2 \dot{q}_{w2} = 0 \]

(7.76)

7.4. Badania czteroosiowych średnich pojazdów opancerzonych z wykorzystaniem modelu zawieszenia hydropneumatycznego

7.4.1. Badania symulacyjne

Opracowany model pojazdu z zawieszeniem hydropneumatycznym i układem hamulcowym EBS/ABS umożliwia przeprowadzenie obliczeń symulacyjnych wg różnych wariantów konfiguracji modelu. W trakcie badań określano wpływ wybranych zmian konstrukcyjnych na zachowanie pojazdu w ruchu:
- prędkości początkowej jazdy (dowolna wartość z przedziału \(<0,100> \text{ [km/h]}\),
- różną wartość 60 km/h),
- rodzaju zawieszenia:
 ✓ hydropneumatyczne (ustawienie domyślne),
 ✓ mechaniczne (na resorach piórowych)
- czasu narastania wymuszenia pochodzącego od układu sterowania hamulcami:
 ✓ szybko – czas narastania 0,2 s (ustawienie domyślne),
 ✓ umiarkowanie – czas narastania 0,5 s,
 ✓ wolno – czas narastania 0,8 s,
- amplitudy wymuszenia pochodzącego od układu sterowania hamulcami (przemiesz- czenie pedału hamulca):
 ✓ 7 cm (ustawienie domyślne),
 ✓ 6 cm,
- współczynnika przyczepności kół do nawierzchni:
 ✓ 0,9 (ustawienie domyślne),
 ✓ 0,77,
 ✓ 0,5,
 ✓ 0,1,
- ciśnienia powietrza w zbiorniku:
 ✓ 850 kPa (ustawienie domyślne),
 ✓ 765 kPa,
 ✓ 700 kPa,
 ✓ 500 kPa,
 ✓ 300 kPa,
 ✓ 200 kPa,
- wymuszenia pochodzącego od nierówności drogi:
 ✓ bez nierówności (ustawienie domyślne),
 ✓ z nierównościami,
 ✓ przejazd przez pryzmu,
- wymuszenia pochodzącego od skrętu kół kierowanych:
 ✓ koła ustawione do jazdy na wprost (ustawienie domyślne),
 ✓ skokowe,
 ✓ narastająco (liniowe),
- konfiguracji układu ABS
 ✓ z modulatorem ABS (ustawienie domyślne),
 - z włączonym układem sterowania ABS (ustawienie domyślne),
 - z wyłączeniem układem sterowania ABS,
 - z wyłączeniem układem sterowania ABS dla poszczególnych kół:
 o koła przednie – oś 1 i 2,
 o koła tylne – oś 3 i 4,
 ✓ z pominięciem modulatora ABS,
- liczby hamowanych kół,
 ✓ wszystkie koła (ustawienie domyślne),
 ✓ koła przednie prawe – oś 1 i 2,
 ✓ koła przednie lewe – oś 1 i 2,
 ✓ koła tylne prawe – oś 3 i 4,
 ✓ koła tylne lewe – oś 3 i 4.

W celu pozyskania informacji na temat własności czteroosiowego średniego pojazdu opancerzonego w ruchu krzywoliniowym przeprowadzono badania symulacyjne według trzech znormalizowanych testów:
- ruchu ustalonego po okręgu,
- hamowania awaryjnego w ruchu krzywoliniowym,
- wymuszenia skokowego na kole kierownicy.

Podczas pierwszego testu symulowano ruch pojazdu z prędkością 80 km/h, wprowadzając liniowy przyrost kąta obrotu kierownicy (ze stałą prędkością 0,1 rad/s) do wartości przy której następowało odrywanie się od drogi jednego z kół. Z uwagi na
symetrię pojazdu oraz symetryczny układ kierownicy próbą wykonywano dla jednego kierunków obrotu koła kierownicy (w lewo). W momencie gdy obiekt wykazywał tendencję do przewracania się na bok (tzn. reakcja pionowa pod dowolnym kolem osiągała wartość równą 0), badania symulacyjne przerwano.

W trakcie drugiego testu symulowano przebieg procesu hamowania awaryjnego od prędkości początkowej 80 km/h na: betonie ($\mu_0 = 0,9$), mokrym asfalcie ($\mu_0 = 0,5$) i lodzie ($\mu_0 = 0,2$), odpowiednio w drugim teście przy jeździe na wprost, a w trzecim w ruchu krzywoliniowym. Przebieg hamowania rozważano dla układu hamulcowego z włączonym (On ABS) lub wyłączonym ABS (Off ABS) i EBS oraz bez tych urządzeń, a także dla dwóch stanów sprawności układu hamulcowego:
- sprawny, tj. 8 kół hamowanych,
- częściowo niesprawny, tj. 4 koła tylne hamowane (układ hamulcowy kół pierwszej i drugiej osi jezdnej niesprawny, układ hamulcowy kół trzeciej i czwartej osi jezdnej sprawny).

Celem trzeciego testu było określenie najwyższej prędkości w ruchu prostoliniowym, dla której istnieje możliwość wykonania gwałtownego (w czasie 0,3 s) obrotu kołem kierownicy do wartości 90°, bez wywrócenia pojazdu (tzn. do chwili, w której reakcja pionowa pod kołem osiągnęła wartość większą niż 0). Symulując skręt pojazdu w lewą stronę analizowano zmiany maksymalnych wartości bezwzględnych spoziomowanych przyspieszenia poprzecznego oraz kąta przechyłu boczne bryły nadwozia przed wywróceniem samochodu. Wymuszenie skrętu koła kierownicy przedstawiono na rysunku 7.14.

![Rys. 7.14. Wyniki zasadniczych badań symulacyjnych czteroosiowego średniego pojazdu opancerzonego](image)

Nominalne wartości parametrów modelu odpowiadają pojazdowi Rosomak i zostały przedstawione w tabeli 7.1. Zakres wprowadzanych zmian konstrukcyjnych zawarto w katalogu zmian wartości parametrów modelu (tab. 7.2).
Tabela 7.1. Nominalne wartości wybranych parametrów modelu symulacyjnego pojazdu

<table>
<thead>
<tr>
<th>Nazwa parametru</th>
<th>Jednostka</th>
<th>Wartość parametru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa całkowita pojazdu</td>
<td>kg</td>
<td>26000</td>
</tr>
<tr>
<td>Główny centralny moment bezwładności bryły nadwozia</td>
<td>kg·m²</td>
<td>16049</td>
</tr>
<tr>
<td>(z ładunkiem) względem osi wzdłużnej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Główny centralny moment bezwładności bryły nadwozia</td>
<td>kg·m²</td>
<td>63414</td>
</tr>
<tr>
<td>(z ładunkiem) względem osi poprzecznej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Główny centralny moment bezwładności bryły nadwozia</td>
<td>kg·m²</td>
<td>67010</td>
</tr>
<tr>
<td>(z ładunkiem) względem osi pionowej</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odległość środka masy pojazdu od osi przedniej</td>
<td>m</td>
<td>2,225</td>
</tr>
<tr>
<td>Odległość środka masy pojazdu od wzdłużnej płaszczyzny symetrii</td>
<td>m</td>
<td>0,000</td>
</tr>
<tr>
<td>Wysokość środka masy bryły nadwozia nad podłożem</td>
<td>m</td>
<td>1,456</td>
</tr>
</tbody>
</table>

Tabela 7.2. Katalog zmian wartości parametrów modelu

<table>
<thead>
<tr>
<th>Nazwa parametru</th>
<th>Jednostka</th>
<th>Wartość parametru</th>
<th>Zmiana względem wartości nominalnej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masa całkowita pojazdu</td>
<td>kg</td>
<td>28000</td>
<td>+2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31000</td>
<td>+5000</td>
</tr>
<tr>
<td>Główny centralny moment bezwładności bryły nadwozia</td>
<td>kg·m²</td>
<td>17172</td>
<td>+1123</td>
</tr>
<tr>
<td>(z ładunkiem) względem osi wzdłużnej</td>
<td></td>
<td>19135</td>
<td>+3086</td>
</tr>
<tr>
<td>掴</td>
<td>kg·m²</td>
<td>64940</td>
<td>+1526</td>
</tr>
<tr>
<td>(z ładunkiem) względem osi poprzecznej</td>
<td></td>
<td>66416</td>
<td>+3002</td>
</tr>
<tr>
<td>掴</td>
<td>kg·m²</td>
<td>68661</td>
<td>+1651</td>
</tr>
<tr>
<td>(z ładunkiem) względem osi pionowej</td>
<td></td>
<td>70234</td>
<td>+3224</td>
</tr>
<tr>
<td>Odległość środka masy pojazdu od osi przedniej</td>
<td>m</td>
<td>2,025</td>
<td>-0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,125</td>
<td>-0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,325</td>
<td>+0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,425</td>
<td>+0,2</td>
</tr>
<tr>
<td>Wysokość środka masy bryły nadwozia nad podłożem</td>
<td>m</td>
<td>0,956</td>
<td>-0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,156</td>
<td>+0,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,756</td>
<td>+0,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,956</td>
<td>+0,5</td>
</tr>
</tbody>
</table>

7.4.2. Ocena wpływu położenia środka masy oraz parametrów inercyjnych w ruchu krzywoliniowym

W wyniku przeprowadzonych badań symulacyjnych oceniono wpływ ponad 30 wielkości fizycznych opisujących ruch krzywoliniowy czterospołowego średniego pojazdu opancerzonego. Prace badawcze posłużyły do oceny wpływu na bezpieczeństwo wykonywania opisanych powyżej manewrów: zwiększenia masy całkowitej pojazdu, położenia środka ciężkości oraz sprawnego układu hamulcowego przy działającym lub nie działającym systemie ABS. Do analizy wyników wybrano charakterystyki przedstawiające:
- tor ruchu,
- przebieg wartości przyspieszenia wzdłużnego i bocznego środka masy pojazdu,
- przebieg wartości prędkości obwodowych kół jezdnych (istotne przy hamowaniu),
- przebieg wartości prędkości pojazdu zarejestrowany w środku masy pojazdu oraz w miejscach odpowiadających położeniu kół jezdnych,
- przebieg wartości sił reakcji pionowej pod kołami jezdnymi.

Poniżej przedstawiono wyniki dla testu wymuszenia skokowego na kierownicy, obrazującego typową sytuację drogową ominięcia przeszkody pojawiającej się nagle na torze jazdy.

Na rysunku 7.15 przedstawiono charakterystykę czasową przyspieszenia poprzecznego dla różnych wariantów masy całkowitej: wynik 46 – 26000 kg, wynik 47 – 28000 kg, wynik 48 – 31000 kg, bez zmiany pozostałych parametrów pojazdu. Uzyskane wartości przyspieszenia poprzecznego, dla poszczególnych wariantów, pozwalają stwierdzić, że najbezpieczniejsze wykonanie manewru (możliwość osiągnięcia największego przyspieszenia poprzecznego = 5,55 m/s²) jest możliwe dla wariantu 48 (rys. 7.15). Oznacza to, że większy moment bezwładności bryły powoduje utrudnione odrzucanie kół jezdnych po stronie wewnętrznej.

![Graph](attachment:image.png)

Rys. 7.15. Charakterystyka czasowa przyspieszenia poprzecznego dla różnych wariantów masy całkowitej: wynik 46 – 26000 kg, wynik 47 – 28000 kg, wynik 48 – 31000 kg

Na rysunku 7.16 została przedstawiona charakterystyka czasowa przyspieszenia poprzecznego dla różnych wariantów położenia wzdłużnego środka masy pojazdu od osi przedniej: wynik 49 – 2,03 m, wynik 50 – 2,13 m, wynik 51 – 2,33 m, wynik 52 – 2,43 m. Największą wartość przyspieszenia poprzecznego osiągnęło dla „tynkowego” położenia środka masy w stosunku do osi pierwszej (warianty 51 oraz 52), co związane jest z przejściem do podsterownej charakterystyki kierowniczności wraz ze zmianą wzdłużnego położenia środka masy. Największa osiągnięta wartość przyspieszenia poprzecznego wyniosła 5,25 m/s², natomiast najmniejsza 4,76 m/s².
Rys. 7.16. Charakterystyka czasowa przyspieszenia poprzecznego dla różnych wariantów położenia wydłużonego środka masy pojazdu od osi przedniej: wynik 49 – 2,03 m, wynik 50 – 2,13 m, wynik 51 – 2,33 m, wynik 52 – 2,43 m

Na rysunku 7.17 została przedstawiona charakterystykę czasową przyspieszenia poprzecznego dla różnych wariantów położenia wysokości środka masy pojazdu od podłoża: wynik 53 – 0,96 m, wynik 54 – 1,16 m, wynik 55 – 1,76 m, wynik 56 – 1,96 m. Otrzymane wyniki są zgodne z oczekiwaniami, to znaczy, że im wyżej położony środek masy, tym większa skłonność pojazdu do przewrócenia na bok. Interesująca ze względu na konstruowanie nowych wersji specjalnych jest informacja, że przy wysokościach na poziomie 2 m, czyli często spotykanych dla pojazdów tej grupy wyposażonych w ciężkie systemy wieżowe (np. kalibru powyżej 100 mm), oderwanie kół jezdnych zachodzi dosyć szybko przy wartościach przyspieszenia poprzecznego znacznie poniżej 4 m/s² (warianty 55 i 56, odpowiednio 3,97 m/s² i 3,34 m/s²), czyli wartości przyjmowanej na ogół za bezpieczną.

Rys. 7.17. Charakterystyka czasowa przyspieszenia poprzecznego dla różnych wariantów położenia wysokości środka masy pojazdu od podłoża: wynik 53 – 0,96 m, wynik 54 – 1,16 m, wynik 55 – 1,76 m, wynik 56 – 1,96 m
Na rysunku 7.18 przedstawiono charakterystyki czasowe, które obrazują z jaką maksymalną prędkością było możliwe wykonanie manewru ominięcia przeszkody dla poszczególnych wariantów. Jak wynika z obliczeń najwyższa prędkość, przy której nie nastąpiło oderwania żadnego z kół, a zarazem umożliwiająca ominięcie przeszkody wynosiła 96 km/h i zachodziła w przypadku wariantów 53 oraz 54, czyli dla pojazdu z najniższym środkiem masy przy zachowaniu nominalnej masy całkowitej wynoszącej 26000 kg. Najniższa bezpieczna prędkość wystąpiła dla wariantu 56, kiedy to środek masy położony był najwyższy, a masa całkowita została zachowana jak dla pojazdu nominalnego.

Rys. 7.18. Charakterystyka czasowa prędkości, obrazująca z jaką maksymalną prędkością było możliwe wykonanie manewru ominięcia przeszkody dla poszczególnych wariantów, numer wariantów zostały zapisane od największej osiąganej prędkości do najmniejszej od góry do dołu.

Wybrane do prezentacji wyniki jednego z testów – wymuszenie skokowe- symulującego manewr ominięcia przeszkody na torze jazdy, pozwoliły określić bezpieczną prędkość dla tego manewru w zależności od masy pojazdu oraz położenia środka masy. Wyniki badań uzyskane za pomocą zbudowanego modelu mogą przyczynić się do poprawy bezpieczeństwa pojazdów opancerzonych wyposażonych w zawieszenie hydropneumatyczne.

7.4.3. Ocena wpływu położenia środka masy oraz parametrów inercyjnych w ruchu prostoliniowym

W celu określenia bezpieczeństwa ruchu czteroosiowego średniego pojazdu opancerzonego z zawieszeniem hydropneumatycznym przeprowadzono także badania w ruchu prostoliniowym. Ich wyniki będą pomocne w ocenie właściwości jezdnych
pojazdu. Jednym z testów, wg którego prowadzono badania było hamowanie awaryjne na wprost. Badania prowadzono na różnorodnej nawierzchni, co opisano współczynnikiem przyczepności specyfikowej przy włączonym lub wyłączonem układzie ABS oraz przy częściowo niesprawnym układzie hamulcowym. Wybrane warianty danych zestawiono w tabeli 7.3.

Tabela 7.3. Wybrane warianty pracy układu hamulcowego

<table>
<thead>
<tr>
<th>DMC [kg]</th>
<th>a [m/s²]</th>
<th>h₀ [m]</th>
<th>m₀</th>
<th>Jₓ</th>
<th>Jᵧ</th>
<th>Jₜ</th>
<th>Włączony ABS</th>
<th>Sprawny UN</th>
<th>Vp [km/h]</th>
<th>uP [dcm]</th>
<th>W1</th>
<th>nazwa pliku</th>
</tr>
</thead>
<tbody>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,90</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik28</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,90</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik29</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,90</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik30</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,50</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik31</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,50</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik32</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,50</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik33</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,20</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik34</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,20</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik35</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,20</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0,7</td>
<td>2</td>
<td>wynik36</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,90</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik37</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,90</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik38</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,90</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik39</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,50</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik40</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,50</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik41</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,50</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik42</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,20</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>1</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik43</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,20</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>1</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik44</td>
</tr>
<tr>
<td>26000</td>
<td>2,23</td>
<td>1,46</td>
<td>0,40</td>
<td>16049</td>
<td>63414</td>
<td>67010</td>
<td>0</td>
<td>0</td>
<td>80</td>
<td>0,7</td>
<td>40</td>
<td>wynik45</td>
</tr>
</tbody>
</table>

Poniżej przedstawiono przykładowe wyniki w postaci wykresów dla dwóch wariantów różniących się od siebie działaniem układu ABS (włączony/wyłączony) (rys. 7.20÷7.28). Wynik badań wg testu hamowania awaryjnego na wprost pozwalają na analizę zachowania pojazdu znacznie bardziej szczegółową niż w przypadku badań eksperymentalnych, co świadczy o przydatności modelu do tego typu zastosowań.
Rys. 7.20. Przebieg wartości przyspieszenia wzdłużnego a_x, przyspieszenia bocznego a_y, oraz kąt skrętu kół kierowanych, dane wg wariantu nr 28

Rys. 7.21. Przebieg wartości pionowej siły nacisku kół pojazdu na drogę, dane wg wariantu nr 28

Rys. 7.22. Przebieg wartości prędkości wzdłużnej pojazdu i prędkości obwodowej jego kół, dane wg wariantu nr 28
Rys. 7.23. Przebieg wartości momentu hamującego koła pojazdu, dane wg wariantu nr 28

Rys. 7.24. Tor ruchu pojazdu, dane wg wariantu nr 29

Rys. 7.25. Przebieg wartości przyspieszenia wzdłużnego a_x, przyspieszenia bocznego a_y, oraz kąta skrętu kół kierowanych, dane wg wariantu nr 29
Rys. 7.26. Przebieg wartości pionowej siły nacisku kół pojazdu na drogę, dane wg wariantu nr 29

Rys. 7.27. Przebieg wartości prędkości wzdłużnej pojazdu i prędkości obwodowej jego kół, dane wg wariantu nr 29

Rys. 7.28. Przebieg wartości momentu hamującego koła pojazdu, dane wg wariantu nr 29
7.5. Podsumowanie rozdziału

W badaniach czteroosiowych średnich pojazdów opancerzonych, ze względu na często wykonywanie wersji specjalnych, istnieje potrzeba weryfikowania oraz niekiedy poprawy bezpieczeństwa ruchu. W wojskowych pojazdach kołowych można wykorzystać nowoczesne układy hydropneumatyczne. Wykonano badania eksperymentalne, których dużą zaletą jest empiryczność, jednak zasadniczą wadą brak możliwości oceny wpływu wielu wariantów parametrów pojazdu. Takie możliwości poznawcze uzyskano za pomocą zbudowanego modelu wyposażonego w układy: ABS, EBS oraz zawieszenie hydropneumatyczne. Rezultaty badań symulacyjnych pozwalają na ocenę różnorodnych wariantów parametrów adekwatnych zarówno dla wprowadzonego wyposażenia, jak i jego rozmieszczania w pojazdzie oraz różnorodnych warunków drogowych (rodzaju nawierzchni) i sprawności układu ABS oraz układu hamulcowego. Uzyskiwane przebiegi pozwalają w sposób bardziej dokładny analizować proces hamowania w tym wpływ na skuteczność układu, takich czynników, jak: zastosowanie hydropneumatycznego zawieszenia, sprawność układu hamulcowego, zastosowanie EBS lub ABS, czy rodzaj nawierzchni, niż podczas badań eksperymentalnych. Zbudowany model symulacyjny posiada strukturę modułową, umożliwiając dowolne jego konfigurowanie w zależności od celu i zakresu przeprowadzanych badań.
8. PODSUMOWANIE I WNIOSKI KOŃCOWE

W pracy przedstawiono opracowaną przez autora metodykę określania wpływu wybranych zmian konstrukcyjnych na bezpieczeństwo ruchu wojskowych pojazdów kołowych. W procesie pozyskiwania nowych pojazdów dla sił zbrojnych, istotne znaczenie ma czas, dlatego zmian konstrukcyjnych dokonuje się na wdrożonych wcześniej podwoziach. Prowadzenie badań z wykorzystaniem opracowanej metodyki pozwala unikać możliwych do pojawiania się zagrożeń w ruchu. Pozwala ona więc wydajnie wspomagać aktualny procesu pozyskiwania pojazdów kołowych do sił zbrojnych.

W dalszej części pracy weryfikowano, przyjęte w metodyce, postępowanie badawcze oparte na niezbędnych badaniach eksperymentalnych i symulacyjnych przeprowadzonych za pomocą zweryfikowanych modeli. W tym celu wykorzystywano zbudowane modele symulacyjne o różnym stopniu złożoności, opracowane przy wykorzystaniu własnego oprogramowania oraz programów MBS.

Warunkiem koniecznym do postępowania zgodnie z przedmiotową metodyką jest dostęp do wcześniej zweryfikowanych eksperymentalnie i symulacyjnych modeli, dlatego też przedstawiane modele zostały zweryfikowane eksperymentalnie. Określona metodykę postępowania przeprowadzono dla różnych obiektów: dwuosiowych lekkich pojazdów opancerzonych (rozdz. 5) oraz czteroosiowych średnich pojazdów opancerzonych (rozdz. 6).

Ze względu na obserwowane tendencje rozwojowe w konstrukcji zawieszeń wojskowych pojazdów kołowych, zwłaszcza opancerzonych, określone postępowanie badawcze przeprowadzono także dla opracowanego modelu zawieszenia hydropneumatycznego (rozdz. 7).

Przedstawione w rozdziałach 5 i 6 badania eksperymentalne oraz symulacyjne wykazały możliwość prowadzenia, w przypadku zróżnicowanych pojazdów opancerzonych, oceny wpływu zmian konstrukcyjnych, zgodnie z metodyką prezentowaną w rozdziale 4. Mankamentem w trakcie realizacji badań eksperymentalnych realizowanych w ograniczonych ramach czasowych jest niewielka liczba analizowanych parametrów pojazdu, uzależniona od posiadanej aparatury oraz możliwości ingerencji w konstrukcję pojazdu przy jej instalowaniu. Ograniczeniem są kwestie organizacyjne oraz związane z bezpieczeństwem. Wzmienione mankamenty nie występują w badaniach symulacyjnych, które umożliwiły szeroką ocenę wpływu różnych zmian konstrukcyjnych na bezpieczeństwo badanego pojazdu wojskowego.

8.1. Rezultaty pracy

– poznańcze:
1. Przedstawienie odmiennych modeli symulacyjnych opancerzonych pojazdów kołowych.
2. Opracowanie modelu zawieszenia hydropneumatycznego.
3. Na potrzeby etapu zebrania danych do modelu uzyskano wyniki badań do opisu parametrów koła ogumionego z wkładką run flat, nie występujące dotychczas w literaturze.
– użytkowe:
1. Opracowanie klasyfikacji pojazdów kołowych przydatnej w wojsku.
2. Rezultaty analizy przyczyn zagrożeń bezpieczeństwa ruchu wojskowych pojazdów kołowych.
3. Rezultaty analizy możliwości poprawy bezpieczeństwa ruchu wojskowych pojazdów kołowych.
4. Rezultaty badań eksperymentalnych opancerzonych pojazdów kołowych w zakresie wpływu na bezpieczeństwo ruchu wybranych zmian konstrukcyjnych.
5. Rezultaty badań symulacyjnych opancerzonych pojazdów kołowych w zakresie wpływu na bezpieczeństwo ruchu wybranych zmian konstrukcyjnych.
6. Rezultaty badań symulacyjnych pojazdu z zawieszeniem hydropneumatycznym.
7. Rezultaty badań eksperymentalnych w aspekcie bezpieczeństwa ruchu pojazdów członowych.

8.2. Przesłanki do dalszych badań

Planuje się kontynuowanie prac głównie w zakresie rozbudowy pakietu zweryfikowanych modeli symulacyjnych pojazdów wojskowych. Dalsze prace badawcze proponuje się prowadzić w następujących dziedzinach:
– budowy modeli symulacyjnych do badań wojskowych pojazdów członowych, co częstochowo uzasadniają badania eksperymentalne wykonane przez autora i przeprowadzone w załączniku,
– budowa modeli symulacyjnych do badań wojskowych pojazdów gąsienicowych,
– budowa modeli symulacyjnych umożliwiających ocenę parametrów pływalności,
– uwzględnienie w badaniach członka załogi w aspekcie ergonomii i organizacji wnętrz.

8.3. Wnioski końcowe

1. Osiągnięto cel pracy: opracowano metodykę określania wpływu wybranych zmian konstrukcyjnych na bezpieczeństwo ruchu wojskowych pojazdów kołowych. Metodykę zweryfikowano w postępowaniu badawczym obejmującym: badania eksperymentalne, symulacyjne, odmienne modele i obiekty badań.
2. Główną przyczyną wypadków drogowych pojazdów wojskowych jest wywrócenie się pojazdu na bok, związane z wprowadzanymi na potrzeby zadań militarnych zmianami konstrukcyjnymi.
3. Opracowana metodyka badawcza pozwala na ocenę wpływu różnorodnych zmian konstrukcyjnych w sposób bardziej wydajny niż wyłącznie przy realizacji badań eksperymentalnych.
4. Opracowane modele symulacyjne posiadają możliwość szczegółowej oceny wpływu na bezpieczeństwo ruchu szerokiego zakresu zmian konstrukcyjnych, dokonywanych w głównych układach pojazdów, o czym świadczą uzyskiwane wyniki badań.
5. Kluczowa ze względu na bezpieczeństwo ruchu jest kwestia położenia wysokości środka masy pojazdu, na co największy wpływ ma konstrukcja opancerzonych kadłubów i dodatkowego osprzętu mocowanego na zewnątrz.
6. Duży wpływ na dokładność opracowanych modeli ma przyjęty model koła ogumionego, w przypadku pojazdów wojskowych niezbędne jest uwzględnienie powszechnie stosowanych wkładów run flat.

7. Podobną przydatność dla opracowanej metodyki wykazują modele, w których równania ruchu wyprowadzono w sposób tradycyjny, modele przekształcanie odbywa się w sposób symboliczny, a także modele wykorzystujące formalizmy układów wielomasowych (MBS) generujące kod.
9. ZAŁĄCZNIK
BADANIA WOJSKOWYCH POJAZDÓW CZŁONOWYCH

Z1. Pojazdy członowe w wojsku

W większości nowoczesnych armii przewóz czołgów, gąsienicowych bojowych wozów piechoty (bwp), samobieżnych armatohaubic na podwoziach gąsienicowych i innego ciężkiego sprzętu odbywa się za pomocą kołowych zestawów transportowych. Składają się one: rządziej – z ciągnika balastowego i przyczepy, bądź (najczęściej) z naczepy i ciągnika siodłowo-balastowego, przeważnie o układzie napędowym 6x6, choć zdarzają się i konstrukcje 8x8 czy 6x4. Obecnie na wyposażeniu WP znajduje się kilkadziesiąt zestawów ciągnik-naczepa [3].

Zestawy niskopodwoziowe wykonują rocznie około 400 kursów. Średnie długości tras wynoszą 200-400 km, z czego około 20-30% stanowią przebiegi na pusto. Praktyka eksploatacyjna wykazuje, że zestawy używane są do przewozu: czołgów, bwp, samochołów oraz innych elementów uzbrojenia wojskowego [3]. Pomimo bardzo dobrych własności trakcyjnych nowoczesnych zestawów, kłopotliwą procedurą jest ich użycie ze względu na ponadgabarytowe wymiary (wymagane zezwolenia). W świetle obowiązującego prawa są to pojazdy nienormatywne [126].

Pojazdy członowe, do których są zaliczane zestawy ciągnik-naczepa, w siłach zbrojnych służą do przewozu tzw. techniki bojowej. Problemy związane z transportem sprzętu wojskowego zostały przedstawione m.in. w pracach [3, 161]. Wynikają one przede wszystkim ze znacznych wymiarów liniowych oraz dużych mas, jakimi charakteryzują się zestawy ciągnik-naczepa. Inne, dodatkowe problemy mające wpływ na bezpieczeństwo ruchu związane są z rodzajem ładunku i sposobem jego mocowania [118].

W przypadku wojskowych pojazdów członowych realizowane są transporty pojazdów gąsienicowych lub kołowych, czyli ładunku dość specyficznego, trudnego w mocowaniu do platform i naczel. Cała grupa opisywanych pojazdów powinna mieć jak najniższe położoną podłogę ładunkową, bowiem w przeciwieństwie do pracy łączna wysokość pojazdu i przewożonego ładunku będzie kolidować z infrastrukturą drogową (tunel, wiadukt, trakcja elektryczna nad jezdnią itp.), a wysoko położony środek masy niekorzystnie wpływa na stateczność ruchu [118]. Rodzaje i przyznane wypadków oraz możliwości poprawy bezpieczeństwa ruchu zostały określone w rozdziale 3.

Z przedstawionych badań wynika, że prace prowadzone z tymi obiektami mają charakter niepowtarzalny ze względu na rodzaj pojazdów, jak i różnorodność ładunków. Głównym problemem jest zapewnienie bezpieczeństwa, warunkowanego zachowaniem stateczność wzdłużnej i przede wszystkim poprzecznej, dotyczą to także ładunku na platformie ładunkowej. Tego typu zagadnienia były rozwiązywane podczas badań eksperymentalnych prowadzonych przez autora wraz z zespołem [148, 158].
Z2. Badania dynamiki w ruchu prostoliniowym

Obiekt badań

Badania prowadzono dla rodziny naczel [158] sprzężonych z ciągnikiem siodłowym Iveco Trakker MP720, przeznaczonym do zastosowań militarnych. Naczepe NS500Z (rys. 9.1) jest pojazdem dostosowanym do transportu 155 mm armatohaubicy Krab, PZA Loara oraz opancerzonych pojazdów gąsienicowych i transporterów kołowych o masie nie przekraczającej jej ładowności, tj. 52 500 kg. Naczepe NR600W (rys. 9.2) przeznaczona jest do transportu gąsienicowych pojazdów kołowych, maszyn budowlanych, kontenerów oraz wszelkiego rodzaju konstrukcji i ładunków o masie nie przekraczającej ładowności 60 000 kg. Naczepe NS700W (rys. 9.3) przeznaczona jest do transportu gąsienicowych pojazdów kołowych, maszyn budowlanych, kontenerów oraz wszelkiego rodzaju konstrukcji i ładunków o masie nie przekraczającej ładowności 70 000 kg.

Układ hamulcowy wymienionych naczel stanowi instalacja dwuprzewodowa naciśnieniowa o ciśnieniu roboczym 0,62-0,72 MPa, dostosowaną do ciągnika wyposażonego w układ pneumatyczny dwuprzewodowy. Zasadniczym elementem w układzie hamulcowym jest umieszczony w środkowej części platformy ładunkowej automatyczny regulator siły hamowania. Dostosowuje on siłę hamowania do stanu załadowania naczel poprzez regulowanie ciśnienia doprowadzanego do silników hamulcowych. Silniki membranowo-sprężynowe, oprócz podstawowej funkcji hamowania naczel podczas jazdy, spełniają dodatkową rolę hamulca postojowego po odpowietrzeniu komory sprężynowej silnika.

Kaźda z badanych naczel była wyposażona w układ ABS, którego działaniem miało być zapobieganie blokowaniu kół naczel, zwłaszcza na śliskiej nawierzchni, przy zachowaniu pełnej siły hamowania oraz przyczepności kół. Ze względu na swoją specyfikę oraz konstrukcję zostały one zakwalifikowane do kategorii pojazdów O (przyczepy z włączeniem naczel) do grupy O4 [121].

Rys. 9.1. Ciągnik siodłowy Iveco Trakker MP720 z naczelą niskopodwoziową NS500Z
Metodykę badań oraz zastosowany tor pomiarowo-rejestrujący przedstawiono szczegółowo w pracy [85]. Zastosowanie w badaniach rejestratora RT 3002 umożliwia rejestrację dodatkowo kąta odchylenia γ oraz kąt przechyłu wzdłużnego q ciągnika. Przeprowadzono wielokrotnie następujące próby:
- nr 1 – hamowanie zestawu niskopodwoziowego NS 700W z ładunkiem czołg T-72 (hamowanie hamulcem roboczym),
- nr 2 – hamowanie zestawu niskopodwoziowego NS 700W z ładunkiem czołg T-72 (hamowanie hamulcem awaryjnym),
- nr 3 – hamowanie zestawu niskopodwoziowego KS 500Z z ładunkiem KTO Rosomak (hamowanie hamulcem roboczym na suchej nawierzchni asfaltowej),
- nr 4 – hamowanie zestawu niskopodwoziowego KS 500Z z ładunkiem KTO Rosomak (hamowanie hamulcem roboczym na ubitym śniegu),
- nr 5 – hamowanie zestawu niskopodwoziowego NR 600W z ładunkiem czołg T-72 (hamowanie hamulcem roboczym),
- nr 6 – hamowanie zestawu niskopodwoziowego NR 600W z ładunkiem czołg T-72 (hamowanie hamulcem awaryjnym).

Na rysunkach 9.4 i 9.5 przedstawiono zestaw z naczepą NS700W podczas testów.
Rys. 9.4. Zestaw hamujący, zastosowanie układu ABS nie wykluczyło możliwości zablokowania kół ostatniej osi

Rys. 9.5 Zestaw niskopodwoziowy NS700W podczas hamowania, widoczne ślady ogumienia na nawierzchni

Na rysunkach 9.6÷9.9 przedstawiono przebiegi czasowe prędkości oraz opóźnienia dla poszczególnych prób 1-4. Natomiast w tabeli 9.1 umieszczono rezultaty badań dla prób 5-6: długość drogi hamowania, wartość średniego w pełni rozwiniętego opóźnienia oraz wskaźnik skuteczności hamowania.
Rys. 9.6. Przebieg czasowy prędkości [m/s] oraz opóźnienia [m/s²] zestawu niskopodwoziowego NS 700W – próba nr 1

Rys. 9.7. Przebieg czasowy prędkości [m/s] oraz opóźnienia [m/s²] zestawu niskopodwoziowego NS 700W – próba nr 2
Hamulec roboczy NS 500Z (suchy asfalt)

Rys. 9.8. Przebieg czasowy prędkości [m/s] oraz opóźnienia [m/s²] zestawu niskopodwoziowego NS 500Z – próba nr 3

Hamulec roboczy NS 500Z (śnieg)

Rys. 9.9. Przebieg czasowy prędkości [m/s] oraz opóźnienia [m/s²] zestawu niskopodwoziowego NS 500Z – próba nr 4
Tabela 9.1. Zestawienie wyników pomiarów

<table>
<thead>
<tr>
<th>Nr próby</th>
<th>Próba</th>
<th>Początkowa prędkość hamowania Vo [km/h]</th>
<th>Wynik pomiaru drogi hamowania z niepewnością S [m]</th>
<th>Średnie w pełni rozwinęte opóźnienie dm [m/s²]</th>
<th>Wskaźnik skuteczności hamowania z [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NS 700W + T-72 (hamulec roboczy)</td>
<td>60,00 ±0,05</td>
<td>31,97 ° 0,02</td>
<td>6,21 ° 0,01</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>NS 700W + T-72 (hamulec awaryjny)</td>
<td>60,88 ±0,05</td>
<td>92,19 ° 0,02</td>
<td>3,74 ° 0,01</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>NS 500Z + KTO (hamulec roboczy) suchy asfalt</td>
<td>58,88 ±0,05</td>
<td>29,62 ° 0,02</td>
<td>5,81 ° 0,01</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>NS 500Z + KTO (hamulec roboczy) śnieg</td>
<td>59,78 ±0,05</td>
<td>49,32 ° 0,02</td>
<td>3,13 ° 0,01</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>NR 600W + T-72 (hamulec roboczy)</td>
<td>60,40 ±0,05</td>
<td>33,00 ° 0,02</td>
<td>6,04 ° 0,01</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>NR 600W + T-72 (hamulec awaryjny)</td>
<td>60,55 ±0,05</td>
<td>83,76 ° 0,02</td>
<td>3,20 ° 0,01</td>
<td>32</td>
</tr>
</tbody>
</table>

Analizując wyniki badań dla zestawu z naczelą NS700W można zauważyć, że wartość średniego w pełni rozwinętego opóźnienia osiągana przy użyciu hamulca awaryjnego (rys. 9.4) jest o około 60% niższa w porównaniu z użyciem hamulca roboczego, natomiast droga hamowania wydłuży się o około 290%.

W naczepie NR 600W wartość średniego w pełni rozwinętego opóźnienia osiągana przy użyciu hamulca awaryjnego naczepy jest o około 53% niższa w porównaniu z użyciem hamulca roboczego, droga hamowania wydłuży się o około 250%. Porównanie wyników badań dla obu tych naczep badanych z ładunkiem o identycznej masie (około 45 000 kg) pozwala stwierdzić, że większość liczba osi przekłada się na większą intensywność hamowania wyrażaną osiąganym opóźnieniem.

Uzyskane wartości drogi hamowania zestawu niskopodwoziowego o masie 70 000 kg powinny uzyskać innym użytkownikom dróg trudności zatrzymania takiego pojazdu na jezdni ośniejonej. W przypadku uszkodzenia układu hamulca roboczego kierujący pojazdem potrzebuje prawie trzykrotnie dłuższej drogi do zatrzymania zestawu.

Podsumowanie

Wykonywanie prób dynamiki pojazdów czołowych w ruchu prostoliniowym z ładunkami wymagającymi wykorzystania pełnej ładowności, chociaż trudnych organizacyjnie i obarczonych sporem ryzykiem, ma ogromne znaczenie dla przyszłej eksploatacji – pozwala na określenie poziomu bezpieczeństwa w ruchu prostoliniowym dla zestawu wraz z ładunkiem. W przypadku problemów ze spełnieniem wymagań, konieczna jest inerencja w konstrukcję pojazdów bądź wydanie decyzji o braku możliwości wdrożenia.

Należy nadmienić, że zmierzone opóźnienie hamowania jest nie mniejsze od wymaganego, określonego na podstawie wskaźnika skuteczności hamowania, oraz nie nastąpiła zmiana położenia osi kierunku poruszania się pojazdu podczas hamowania o więcej niż 0,5 m względem kierunku początkowego (przy niekorygowanym kierunki-
czą kierunku jazdy).
W trakcie prowadzonych badań eksperymentalnych otrzymano wyniki pozwalające na ocenę układu hamulcowego zestawów niskopodwoziowych stosowanych w siłach zbrojnych. Uzyskane wyniki pozwalają na oszacowanie drogi hamowania zestawów niskopodwoziowych w odniesieniu do warunków atmosferycznych panujących na drodze i tym samym wykazują przydatność prowadzenia tego typu prób. Część z uzyskanego materiału badawczego może zostać wykorzystana w badaniach symulacyjnych np. weryfikacji zgodności modelu symulacyjnego. W badaniach należy zwrócić uwagę także na zastosowanie maksymalnych ładunków (pod względem wymiarów oraz masy) z podatnym zawieszeniem w postaci innych pojazdów, które powodowały, że obiekty badań stawały się pojazdami nienormatywnymi. Ponadto badania prowadzono na nawierzchniach o różnym współczynniku przyczepności, co dotychczas nie było prezentowane w dostępnej literaturze.

Z3. Badania dynamiki w ruchu krzywoliniowym

Obiekt badań

Obiektami badań eksperymentalnych była naczepa NS500Z [100] (rys. 9.10), sprzężona z ciągnikiem Iveco Trakker MP720. Jako ładunek posłużył opancerzony transporter kołowy o masie 26 000 kg, co powodowało, że badany obiekt był pojazdem nienormatywnym.

W ramach badań wykonywano wielokrotnie manewr podwójnej zmiany pasa ruchu. Próby przeprowadzono opierając się na torze pomiarowym zgodnym z AVTP 03-160W. Zgodnie z procedurą, kryterium oceny była liczba straconych pachołów wyznaczających odcinek toru badawczego. Do wykonania prób wytypowano trzech doświadczonych kierowców. Badania prowadzono dla dwóch wariantów, z wykorzystaniem identycznego toru pomiarowego jak w badaniach opisanych w podrozdziale 6.2:
- wariant 1 – ciągnik siodłowy wraz z naczezą obciążoną ładunkiem (pomiary realizowane w środku masy naczepy),
- wariant 2 – ciągnik siodłowy wraz z naczezą bez ładunku (pomiar parametrów w kabinie kierowcy).
Wyniki badań przedstawiono w tabelach 9.2 i 9.3.
Tabela 9.2. Prędkość, liczba straconych pacholków oraz uwagi podczas przejazdów zestawem niskopodwoziowym w czasie próby podwójnej zmiany pasa ruchu (wariant nr 1)

<table>
<thead>
<tr>
<th>Prędkość przejazdu [km/h]</th>
<th>Kierunek przesunięcia pasa</th>
<th>Nr straconych pacholków</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KIEROWCA nr 1</td>
<td>KIEROWCA nr 2</td>
<td>KIEROWCA nr 3</td>
</tr>
<tr>
<td>50</td>
<td>Prawy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>50</td>
<td>Lewy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>Prawy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>Lewy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>Prawy</td>
<td>-</td>
<td>7,8,9</td>
</tr>
<tr>
<td>70</td>
<td>Lewy</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>75</td>
<td>Prawy</td>
<td>9</td>
<td>7,8,9,5a,6a</td>
</tr>
<tr>
<td>75</td>
<td>Lewy</td>
<td>1</td>
<td>Rezygnacja</td>
</tr>
</tbody>
</table>

Tabela 9.3. Prędkość, liczba straconych pacholków oraz uwagi podczas przejazdów zestawem niskopodwoziowym w czasie próby podwójnej zmiany pasa ruchu (wariant nr 2)

<table>
<thead>
<tr>
<th>Prędkość przejazdu [km/h]</th>
<th>Kierunek przesunięcia pasa</th>
<th>Nr straconych pacholków</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KIEROWCA nr 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Lewy</td>
<td>7a</td>
<td>Brak</td>
</tr>
<tr>
<td>50</td>
<td>Prawy</td>
<td>-</td>
<td>Brak</td>
</tr>
<tr>
<td>60</td>
<td>Lewy</td>
<td>-</td>
<td>Brak</td>
</tr>
<tr>
<td>60</td>
<td>Prawy</td>
<td>-</td>
<td>Brak</td>
</tr>
<tr>
<td>70</td>
<td>Lewy</td>
<td>-</td>
<td>Brak</td>
</tr>
<tr>
<td>70</td>
<td>Prawy</td>
<td>-</td>
<td>Brak</td>
</tr>
</tbody>
</table>

Na rysunku 9.11 przedstawiono obiekt badań w trakcie wykonywania manewru podwójnej zmiany pasa ruchu.

Rys. 9.11. Zestaw niskopodwoziowy podczas przejazdu próby pokonania toru badawczego
Podczas analizy danych (tab. 9.1 i 9.2) można zauważyć, że pierwsze potrącenia pachołów zaczynały się przy prędkości 70 km/h. Trzeba jednak wyraźnie podkreślić dwa istotne aspekty, charakterystyczne dla wykonywania próby podwójnej zmiany pasa ruchu zestawem niskopodwoziowym. Po pierwsze, tory badawcze według normy ISO 3888 czy AVTP 03-160W ustalają stałą wartość dodaną do szerokości korytarza sekcji na 0,25 m. Jest to istotne dla samochodów osobowych, np. Smart (szerokość 1,515 m), ponieważ stanowi to 16,5% szerokości auta. W przypadku samochodów o dużych gabarytach jest to marginalna wartość (ok. 8% szerokości pojazdu).

Po drugie, podczas pokonywania toru badawczego przez zestaw niskopodwoziowy nie wszystkie pachołki zostały strącone poprzez najechanie, uderzenie czy zahaczenie naczelą, lecz również przez podmuch powietrza wytworzony przejazdem tak dużego obiektu.

Ustalenie, czy według przyjętych norm (kryteriów) badany obiekt spełnia narzucone wymagania (formułowane bardzo ogólnie) nastręcza zespołem badawczym problemy. Dlatego podczas dokonywania badań bardziej istotną rolę ma nadal subiektywna ocena kierowców prowadzących pojazd niż liczba strąconych pachołów. Z tego powodu badania prowadzone w ten sposób mogą okazywać się mało transparentne dla niektórych użytkowników instytucjonalnych.

Eliminację możliwości formułowania, takich – skądinąd niesłusznych zarzutów – próbowano ograniczać rejestrując m.in. prędkość, przyspieszenie oraz kąt przechyłu, w kierunku poprzecznym w celu oceny stateczności pojazdu.

Przykładowe wykresy przedstawiające przebieg prędkości poprzecznej, przyspieszenia poprzecznego, kąta przechyłu poprzecznego działającego na pojazd podczas próby przejazdu z prędkością początkową 50 km/h oraz 70 km/h przedstawiono na rysunkach 9.12÷9.15.

Wariant nr 1 – prędkość początkowa 50 km/h

Rys. 9.12. Przebieg prędkości poprzecznej, przyspieszenia poprzecznego, kąta przechyłu poprzecznego podczas manewru podwójnej zmiany pasa ruchu
Wariant nr 2 – prędkość początkowa 50 km/h

Rys. 9.13. Przebieg zarejestrowanej prędkości poprzecznej, przyspieszenia poprzecznego, kąta przechyłu poprzecznego podczas manewru podwójnej zmiany pasa ruchu zestawem niskopodwoziowym

Wariant nr 1 – prędkość początkowa - 70km/h

Rys. 9.14. Przebieg zarejestrowanej prędkości poprzecznej, przyspieszenia poprzecznego, kąta przechyłu poprzecznego podczas manewru podwójnej zmiany pasa ruchu zestawem niskopodwoziowym
Wariant nr 2 – prędkość początkowa - 70 km/h

Rys. 9.15. Przebieg zarejestrowanej prędkości poprzecznej, przyspieszenia poprzecznego, kąta przechyłu poprzecznego podczas manewru podwójnej zmiany pasa ruchu zestawem niskopodwoziowym

Z analizy wyników badań wynika, że przyspieszenie poprzeczne ciągnika, niezależnie od prędkości jazdy, jest wyższe od naczepy. Oznacza to, że kierowca będzie odczuwał większe wartości przeciżenia w kierunku poprzecznym, co może przyczyniać się do obniżenia prędkości wykonywania manewru. Zauważono ponadto, że kabina kierowcy ma mniejszy przechyl poprzeczny w stosunku do platformy ładunkowej, niezależny od prędkości pokonywania odcinka toru badawczego, wobec przechyłu naczepy zwiększającego się wraz ze wzrostem prędkości. Może to wynikać z oddziaływania stabilizującego naczepy na ciągnik poprzez sprzęg.

W rezultacie prowadzonych badań eksperymentalnych uzyskano charakterystyki określające zachowanie pojazdu podczas podwójnej zmiany pasa ruchu. Pozwoliły one określić stateczność dynamiczną.
Literatura

40. ISO 7401: Road Vehicles – Lateral Transient Response Test Method.
41. ISO TR 3888: Road Vehicles – Test Procedure for a Severe Lane-Change Maneuver.

79. Materiały informacyjne producentów pojazdów opancerzonych (z archiwum autora).

89. Norma Stanag 4569
121. Regulamin nr 13 EKG ONZ.
124. Rozporządzenie Ministra Infrastruktury z dnia 16 grudnia 2003 r. w sprawie zakresu i sposobu przeprowadzania badań technicznych pojazdów oraz wzorów dokumentów stosowanych przy tych badaniach (Dz. U. 227 poz. 2250).
125. Rozporządzenie Ministra Infrastruktury z dnia 26 lipca 2004 r. zmieniające rozporządzenie w sprawie warunków technicznych pojazdów oraz zakresu ich niezbędnego wyposażenia (Dz. U. 169 poz. 1773 z dnia 30 lipca 2004 r.).

143. Simiński P., 2007. Badania opancerzonej kabiny Jelcz 146 oraz zbiorników pa-
liwa w układzie zasilania silnika. Opracowanie niepublikowane, Sulejówek.
144. Simiński P., 2007. Ocena skuteczności współczesnych układów hamulcowych
zestawów transportowych. Mat. VIII Międzynarodowej Konferencji Hamulco-
wej, Łódź, 209-216.
145. Simiński P., 2007. Problematyka rozwoju konstrukcji samochodu patrolowo-
interwencyjnego Dzik. Transport XXI w., tom 2, 197-204.
w rekonstrukcji wypadków drogowych. Biuletyn Rzeczoznawców Stowarzysze-
nia Motoryzacji 5, 23-27.
147. Simiński P., 2007. Research about possibility of endanger crew of wheeled ar-
moured personal carrier on vibrations. J. Kones Powertrain and Transport 14(1),
349-355.
o regulowanej szerokości platformy i wysokości płyty nasiodowej - NR 300S.
Nepublicowane sprawozdanie z projektu celowego, Sulejówek.
149. Simiński P., 2007. Wpływ na bezpieczeństwo ruchu modernizacji pojazdu tere-
nowego na potrzeby misji stabilizacyjnej. Transport XXI w., tom 2, 205-211.
klasy Armoured Fighting Vehicles. Czasopismo Logistyka 2, CD pełny tekst.
151. Simiński P., 2008. Badania eksperymentalne pojazdu 8x8 w ruchu po okrą-
gu oraz dla manewru podwójnej zmiany pasa ruchu. Mechanika 6-M(10), 85-95.
wstępnego samochodu patrolowo-interwencyjnego w wersji medycznej, Zesz.
Nauk. Politechniki Świętokrzyskiej Nauki techniczne – Budowa i eksploatacja
maszyn 8, 353-362.
Zesz. Nauk. Wyszej Szkoły Oficerskiej Wojsk Lądowych, Poglądy i Doświad-
czenia 2, 235-241.
safety – experimental result. SAE Papers 01-1484.
wozu bojowego AFV. [W:] Problemy eksploatacji techniki bojowej oraz kompe-
tencje logistyka, K. Kowalski (red.). Wyd. Wyższej Szkoły Wojsk Lądowych we
Wrocławiu.
156. Simiński P., 2008. Określenie wpływu wybranych parametrów konstrukcyjnych
i eksploatacyjnych Samochodu Patrolowo-Interwencyjnego na wartości parame-
trów granicznych kierowalności i stateczności tego pojazdu. Niepublikowane
sprawozdanie z projektu rozwojowego, Sulejówek.
samochodu patrolowo-interwencyjnego. Teka Komisji Motoryzacji PAN
w Krakowie. Zeszyt 33/34, 381-392.
158. Simiński P., 2008. Rodzina naczepek uniwersalnych do przewozu ciężkich pojaz-
dów gąsienicowych. Niepublikowane sprawozdanie z projektu celowego
Pojazdów Politechniki Warszawskiej 3, 7-16.

METODYKA OKREŚLANIA WPŁYWU WYBRANYCH ZMIAN KONSTRUKCYJNYCH NA BEZPIECZEŃSTWO RUCHU WOJSKOWYCH POJAZDÓW KOŁOWYCH

Streszczenie

Rozprawa dotyczy zagadnień związanych z bezpieczeństwem wojskowych pojazdów kołowych. Głównym jej celem naukowym jest opracowanie metodyki określania wpływu wybranych zmian konstrukcyjnych na bezpieczeństwo ruchu wojskowych pojazdów kołowych.

W pracy przedstawiono opracowaną przez autora metodykę. W procesie pozyskiwania nowych pojazdów dla sił zbrojnych, istotny wpływ ma czas oraz wykonywanie szerokiego zakresu zmian konstrukcyjnych na wdrożonych wcześniej podwoziach. Należy stwierdzić, że przy specyfice obiektów, mogą pojawić się trudności w wyczerpującym uwzględnieniu problematyki bezpieczeństwa ruchu. Dodatkowo w pozyskiwaniu sprzętu pojawiają się determinanty: czas oraz koszty. W procesie tym nie ma miejsca na poprawę i doskonalenie konstrukcji, a badania w zakresie bezpieczeństwa ruchu pojazdów kołowych mogą być ograniczone. Procedura wdrażania i weryfikacji sprzętu kładzie nacisk na optymalizację konstrukcji już na etapie projektowania oraz budowy prototypu. Procedura pozyskiwania nowych pojazdów kołowych dla wojska to jedna z głównych przeszkód przemawiających za opracowaniem metodyki z wykorzystaniem badań symulacyjnych.

Prowadzenie badań na podstawie opracowanej metodyki pozwala unikać możliwych do pojawiania się zagrożeń w ruchu. Metodyka pozwala więc wydajnie wspomagać aktualny proces pozyskiwania pojazdów kołowych do sił zbrojnych. W pracy weryfikowano, przyjęte w metodyce, postępowanie badawcze złożone z niezbędnego zakresu badań eksperymentalnych oraz szerokiego zakresu symulacyjnych, za Pomocą opracowanych, zweryfikowanych eksperymentalnie modeli. W tym celu zbudowano dwa modele symulacyjne o różnym stopniu złożoności, opracowane przy wykorzystaniu różnych narzędzi w postaci własnego oprogramowania jak i programów MBS. Warunkiem koniecznym do postępowania zgodnie z przedmiotową metodyką jest dostęp do wcześniej zweryfikowanych eksperymentalnie modeli symulacyjnych. Dlatego też oba modele zostały zweryfikowane eksperymentalnie. Okrównoną metodykę postępowania przeprowadzano dla różnych obiektów. Ze względu na obserwowane tendencje rozwojowe w konstrukcji zawieszeń wojskowych pojazdów kołowych, zwłaszcza opancerzonych, określone postępowanie badawcze przeprowadzono także dla opracowanego modelu zawieszenia hydropneumatycznego.

Mankamentem w przypadku realizacji badań eksperymentalnych realizowanych w ograniczonym czasie jest niewielka liczba analizowanych parametrów pojazdu, uzależniona od posiadanej aparatury oraz możliwości ingeneracji w konstrukcje pojazdu przy jej instalowaniu. Ograniczeniami są kwestie organizacyjne oraz związane z bezpieczeństwem. Wspomniane mankamenty nie występują w badaniach symulacyjnych, które umożliwiły szeroką ocenę wpływu różnych zmian konstrukcyjnych na bezpieczeństwo badanego pojazdu wojskowego.

W dalszej części pracy zweryfikowano postępowanie badawcze, na które złożyły się badania eksperymentalne i symulacyjne. Rezultaty pracy mogą być szczególnie przydatne dla Sił Zbrojnych RP.
METHODOLOGY OF DEFINE SELECTED CONSTRUCTION CHANGES INFLUENCE ON MILITARY WHEELED VEHICLES ROAD SAFETY

Summary

This work pertains to matters related to the security of military wheel vehicles. Its main research aim is to prepare the methodology of defining the influence of chosen structure changes for the safety of military wheel vehicle transport.

The work presents the methodology prepared by the author. During the process of acquiring new vehicles for the armed forces time is of the essence in practice of conducting a wide range of structure changes in previously implemented undercarriages. It has to be pointed out that with a high individuality and the very nature of the units, difficulties in scope of comprehensive testing with regard to matters of transport safety. What is more, two determinants are essential in the process of acquiring equipment – time and cost. The process does not allow for improvement and perfecting of the structure, and the research in scope of wheel vehicle movement safety may be limited. The procedure of implementation and verification of equipment stresses the structure optimization as early as on the designing and prototype preparation stages. The procedure of acquiring new wheel vehicles for the military is one of the main premises for preparing the methodology with use of simulation research.

Conducting research on the basis of the prepared methodology allows for avoiding possible traffic risks. The methodology enables an effective support for the current process of wheel vehicle acquisition for the armed forces. In this work the research procedure consisting of the necessary range of prepared, experimentally verified models, accepted by the methodology, have been verified. In order to do that two simulation models have been built, both of various levels of complexity. They have been prepared with use of various tools such as own software and MBS programs. The condition necessary for proceeding in accordance with the objective methodology is the access to previously experimentally verified simulation models. Thus the two models have been experimentally verified. The given methodology of proceeding has been conducted for various objects. Because of noticed development tendencies of chassis structures of military wheel vehicles, and in particular armored vehicles, the research proceeding has been conducted also for the prepared hydro-pneumatic undercarriage model.

In the case of experimental research realized in limited time frames, the drawback is a small number of analyzed vehicle parameters dependent on the possessed appliances and possibilities of interference in the vehicle’s structure with its installation. The limitation are the organizational matters and those related to security. The above drawbacks are not present in simulation research which enabled a wide evaluation of the influence of various structural changes for the safety of the examined military vehicle.

In the next part of the work the research procedure consisting of experimental and simulation research has been verified. The work results can be especially helpful for the Polish Armed Forces.